|
|
Effects of carbon content on the microstructure and performance of WC-TiC-Co cemented carbides |
LUO Ren, XIONG Huiwen, CHEN Nan, LI Zhiyou |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract The powders with main phase of η phase were synthesized via the carbonization of W, Co, C and TiC mixtures firstly, WC-TiC-Co composite powders with different carbon contents were then synthesized by the carbonization of the η phase powder. WC-TiC-Co cemented carbides were prepared by vacuum sintering. The effects of carbon contents on the phase consistent, grain size, morphology and mechanical performance were investigated. The results show that the carbon content is the key factor affecting the phase composition and grain size of the alloy. The η phase with irregular shape remains in carbon-poor alloys and forms a metallurgical bonding with WC phase. Co phase tends to distribute at the interface between WC and (Ti,W)C phases. WC grains in carbon-rich alloys show a more regular shape than that in carbon-poor alloys. The size of WC and (Ti,W)C phase increase and the W content in (Ti,W)C phase and binder phase also increases. The alloy with suitable carbon amount has the hardness (HRA) of 91.7, the transverse rupture strength of 1678 MPa and the fracture toughness of 10.2 MPa∙m1/2.
|
Received: 10 July 2020
Published: 18 January 2021
|
|
|
|
|
[1] 徐涛. 硬质合金高端产品及新材料发展趋势分析[J]. 硬质合金, 2011(6): 63-70. XU Tao. Development trend analysis of advanced products and new materials of cemented carbide materials[J]. Cemented Carbide, 2011(6): 63-70. [2] HASHE N G, NEETHLING J H, BERNET P R, et al.A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides[J]. International Journal of Refractory Metals & Hard Materials, 2007, 25(3): 207-213. [3] BHAUMIK S K, UPADHYAYA G S, VAIDYA M L.Properties and microstructure of WC-TiC-Co and WC-TiC-Mo2C-Co(Ni) cemented carbides[J]. Metal Science Journal, 2013, 7(8): 723-727. [4] CHA S I, HONG S H, HA G H, et al.Mechanical properties of WC-10Co cemented carbides sintered from nanocrystalline spray conversion processed powders[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19(4/6): 397-403. [5] LAY S, LOUBRADOU M, DONNADIEU P.Ultra fine microstructure in WC-Co cermet[J]. Advanced Engineering Materials, 2010, 6(10): 811-814. [6] HE R, WANG J, MENG H, et al.Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide[J]. Ceramics International, 2018, 44(9): 10961-10967. [7] LEE K H, CHA S I, BYUNG K.Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(1/2): 109-114. [8] 石丽秋, 王晓灵, 熊超伟. 球磨时间对双晶结构的WC-TiC- Co/Ni硬质合金组织及性能的影响[J]. 硬质合金, 2015, 32(3): 155-163. SHI Liqiu, WANG Xiaoling, XIONG Chaowei. Effect of milling time on microstructure and properties of WC-TiC-Co/Ni cemented carbide with dual grain structure[J]. Cemented Carbides, 2015, 32(3): 155-163. [9] 张凤林, 崔晓龙, 朱敏, 等. 高能球磨制备纳米WC-Co复合粉末及其SPS烧结[J]. 硬质合金, 2007, 24(2): 80-83. ZHANG Fenglin, CUI Xiaolong, ZHU Min, et al. Nanostructured WC-Co composite powder fabricated by high- energy ball milling and spark plasma sintering[J]. Cemented Carbides, 2007, 24(2): 80-83. [10] LIU S, HUZNG Z L, LIU G.Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling[J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(6): 461-464. [11] 饶岩岩, 张久兴, 王澈, 等. 钨/钴氧化物SPS直接碳化原位合成超细WC-Co硬质合金[J]. 稀有金属与硬质合金, 2006, 34(1): 18-21. RAO Yanyan, ZHANG Jiuxing, WANG Che, et al. SPS in-situ synthesis of WC-Co hard metal by directly carbonization of tungsten/cobalt oxide[J]. Rare Metals and Cemented Carbides, 2006, 34(1): 18-21. [12] LIU W, SONG X, ZHANG J, et al.Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(1): 115-120. [13] 郭圣达, 鲍瑞, 刘亮, 等. 原位合成复合粉制备超细WC-Co硬质合金[J]. 稀有金属材料与工程, 2017, 46(12): 3977-3982. GUO Shengda, BAO Rui, LIU Liang, et al. Ultra-fine grain cemented carbide fabricated from WC-Co composite powder by in-situ synthesis[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3977-3982. [14] 郭瑜, 李志友, 熊慧文. η相粉末的加入对WC-10Co硬质合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5): 702-709. GUO Yu, LI Zhiyou, XIONG Huiwen. Effect of η phase powders addition on the microstructure and properties of WC-10Co cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy , 2016, 21(5):702-709. [15] PAN Y, XIONG H, LI Z, et al.Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81(4): 127-136. [16] XIONG, H W, GUO Y, LI Z.New production of (Ti, W)C-based cermets toughened by in-situ formed WC and twinned (Ti,W)C platelets: Carbonization of the Nix(Ti-0.6,W-0.4)(4)C-type η phases[J]. Journal of Alloys and Compounds, 2018, 731(2): 253-263. [17] WEI C B, SONG X Y, FU J.Effect of carbon addition on microstructure and properties of WC-Co cemented carbides[J]. Journal of Materials Science and Technology, 2012, 28(9): 837-843. [18] SUETIN D V, SHEIN I R, IVANOVSKII A L.Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations[J]. Physica B: Condensed Matter, 2009, 404(20): 3544-3549. [19] MACHADO I F, GIRARDINI L, LONARDELLI I, et al.The study of ternary carbides formation during SPS consolidation process in the WC-Co-steel system[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(5): 883-891. [20] AHN S Y, KANG S.Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process[J]. Journal of the American Ceramic Society, 2000, 83(6): 1489-1494. [21] KIM S, MIN K H, KANG S .Rim structure in Ti(C0.7N0.3)- WC-Ni cermets[J]. Journal of the American Ceramic Society, 2003, 86(10): 1761-1766. [22] 张立, SCHUBERT W D, 黄伯云. 热压固结与传统液相烧结对WC-20Co-1Y2O3硬质合金组织结构与性能的影响[J]. 粉末冶金材料科学与工程, 2003, 8(3): 179-185. ZHANG Li, SCHUBERT W D, HUANG Boyun. WC-20Co- 1Y2O3 cemented carbide by hot-press and liquid phase sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2003, 8(3): 179-185. [23] GREENWOOD G W.The growth of dispersed precipitates in solutions[J]. Acta Metallurgica, 1956, 4(3): 243-248. [24] YANG Z, SHAW L L.Growth mechanisms of WC in WC-5.75 wt% Co[J]. Ceramics International, 2011, 37(8): 3591-3597. [25] 盛智勇, 张崇才, 方琴. 冷等静压成形及烧结温度对超细WC-TiC-Co 硬质合金性能的影响[J]. 西华大学学报, 2008, 27(4): 69-71. SHENG Zhiyong, ZHANG Chongcai, FANG Qin. Influence of cold isostatic pressing and sintering temperature on the property of ultrafine WC-TiC-Co cemented carbide[J]. Journal of Xihua University, 2008, 27(4): 69-71. [26] 李晨辉, 余立新, 熊惟皓. WC的粒度对WC-Co硬度合金断裂韧性的影响[J]. 硬质合金, 2001, 18(3): 138-141. LI Chenhui, YU Lixin, XIONG Weihao. Effect of WC partied size on WC-Co cemented carbides fracture toughness[J]. Cemented Carbide, 2001, 18(3): 138-141. |
|
|
|