|
|
Microstructure and mechanical properties of oxide dispersion strengthened Fe-based alloy prepared by spark plasma sintering |
DUAN Qinglong, LIU Zuming, HUANG Liqing, GUO Yang, SU Pengfei, CHEN Shiqi |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Oxide dispersion strengthened (ODS) steels was fabricated by gas atomized and ball milling powders via spark plasma sintering (SPS) at 900-1 100 ℃, hot rolling and annealing. Microstructure and mechanical properties of these alloys were investigated by means of X-ray diffraction (XRD), metallographic analysis (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical testing such as micro-hardness and tensile testing. The results show that sintering temperature, hot rolling and heat treatment can greatly affect the microstructure and properties of ODS iron-based alloys. With the increase of sintering temperature, the original particle interface is gradually eliminated, the porosity of the alloy decreased, the density is increased, the tensile strength and microhardness increase. The tensile strength of the alloys sintered at 900, 1 000 and 1 100 ℃ are 191, 392 and 814 MPa respectively. After rolling and annealing, the tensile strength and elongation of steel sintered at 900 ℃ increase. After rolling, the tensile strength of the alloy sintered at 1 100 ℃ increases to 1 003 MPa, and the elongation is 6.48%. After heat treatment, the tensile strength decreases to 915 MPa, and the total elongation increases to 9.77%.
|
Received: 22 April 2015
Published: 19 June 2020
|
|
|
|
|
Cite this article: |
DUAN Qinglong,LIU Zuming,HUANG Liqing, et al. Microstructure and mechanical properties of oxide dispersion strengthened Fe-based alloy prepared by spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 72-78.
|
|
|
|
URL: |
http://pmbjb.csu.edu.cn/EN/ OR http://pmbjb.csu.edu.cn/EN/Y2020/V25/I1/72 |
[1] UKAI S, NISHIDA T, OKUDA T, et al. R & D of oxide dispersion strengthened ferritic martensitic steels for FBR[J]. Journal of Nuclear Materials, 1998, 258/263(Part 2): 1745-1749. [2] SANDIM H R Z, RENZETTI R A, PADILHA A F, et al. Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel[J]. Materials Science and Engineering A, 2010, 527(15): 3602-3608. [3] LI M, ZHOU Z, HE P, et al.Microstructure and mechanical property of 12Cr oxide dispersion strengthened ferritic steel for fusion application[J]. Fusion Engineering and Design, 2010, 85(7): 1573-1576. [4] 柳光祖, 田耘, 单秉权. 氧化物弥散强化高温合金[J]. 粉末冶金技术, 2011, 19(1): 20-23. LIU Guangzu, TIAN Yun, SHAN Bingquan.Oxide dispersion strengthened superalloys[J]. Powder Metallurgy Technology, 2011, 19(1): 20-23. [5] BENJAMIN J S. Fundamentals of mechanical alloying[J]. Materials Science Forum, 1992, 88-90: 1-18. [6] KLUEH R L, SHINGLEDECKER J P, SWINDEMAN R W, et al.Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys[J]. Journal of Nuclear Materials, 2005, 341(2/3): 103-114. [7] KLUEH R L, MAZIASZ P J, KIM I S, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel[J]. Journal of Nuclear Materials, 2002, 307-311: 773-777. [8] MUKHOPADHYAY D K, FROES H F, GELLES D S. Development of oxide dispersion strengthened ferritic steels for fusion[J]. Journal of Nuclear Materials, 1998, 258/263(Part 1): 1209-1215. [9] SCHÄUBLIN R, RAMAR A, BALUC N, et al. Microstructural development under irradiation in European ODS ferritic/ martensitic steels[J]. Journal of Nuclear Materials, 2006, 351(1/3): 247-260. [10] UEHIRA A, UKAI S, MIZUNO T, et al.Tensile properties of llCr-0.5Mo-2W, V, Nb stainless steel in LMFBR environment[J]. Journal of Nuclear Science and Technology, 2000, 37(9): 780-786. [11] CAPDEVILA C, BHADESHIA H K.Manufacturing and microstructural evolution of mechanuically alloyed oxide dispersion strengthened superalloys[J]. Advanced Engineering Materials, 2001, 3(9): 647-656. [12] ODETTE G R, ALINGER M J, WIRTH B D.Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38(1): 471-503. [13] KARAK S K, CHUDOBA T, WITCZAK Z, et al.Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing[J]. Materials Science and Engineering A, 2011, 528(25/26): 7475-7483. [14] 郭丽娜, 贾成厂, 胡本芙. 络合溶胶-凝胶法制备氧化物弥散强化12Cr 钢中氧化物的形成机制[J]. 复合材料学报, 2011, 28(4): 124-129. GUO Lina, JIA Chengchang, HU Benfu.Oxides formation mechanism of oxide dispersion strengthened 12Cr steel by complex sol-gel method[J]. Acta Materiae Composite Sinica, 2011, 28(4): 124-129. [15] MILLER M K, HOELZER D T, KENIK E A.Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2005, 13(3/4): 387-392. [16] MILLER M K, RUSSELL K F, HOELZER D T, et al.Characterization of precipitates in MA/ODS ferritic alloys[J]. Journal of Nuclear Materials, 2006, 351(1/3): 261-268. [17] SINGH R, SCHNEIBEL J H, DIVINSKI S, et al.Grain boundary diffusion of Fe in ultrafine-grained nanocluster- strengthened ferritic steel[J]. Acta Materialia. 2011, 59(4): 1346-1353. [18] WEN Y, LIU Y, LIU F, et al.Addition of Fe2O3 as oxygen carrier for preparation of nanometer-sized oxide strengthened steels[J]. Journal of Nuclear Materials, 2010, 405(2): 199-202. [19] 陈仕奇, 刘祖铭, 黄伯云, 等. 氧过饱和铁基合金粉末的气体雾化制备方法[P]. 中国: CN102248171A, 2011-07-12. CHEN Shiqi, LIU Zuming, HUANG Baiyun, et al. Preparation of oxygen supersaturated Fe-based alloy powder by gas atomization[P]. China: CN102248171A, 2011-07-12. [20] 刘祖铭, 刘咏, 贺跃辉, 等. 一种纳米团簇强化铁基高温合金[P]. 中国: CN102127714A, 2011-07-20. LIU Zuming, LIU Yong, HE Yuehui, et al. A nano-cluster strengthened Fe-based superalloy[P]. China: CN102127714A, 2011-07-20. [21] 刘祖铭, 黄伯云, 刘咏, 等. 一种气体雾化粉末挤压成形制备铁基高温合金的方法[P]. 中国: CN102127672A, 2011-07-20. LIU Zuming, HUANG Baiyun, LIU Yong, et al. A method for preparing Fe-based superalloy by gas atomized powder extrusion[P]. China: CN102127672A, 2011-07-20. [22] 郭薇. 粉末冶金铁基高温合金组织及力学性能研究[D]. 长沙: 中南大学, 2012. GUO Wei.Study on microstrucutre and mechanical properties of powder metallurgy iron-based superalloy[D]. Changsha: Central South University, 2012. [23] KISHIMOTO H, ALINGER M J, ODETTE G R, et al.TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys[J]. Journal of Nuclear Materials, 2004, 329: 369-371. [24] ALINGER M J, ODETTE G R, HOELZER D T. The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys[J]. Journal of Nuclear Materials, 2004, 329-333: 382-386. [25] 罗锡裕. 放电等离子烧结材料的最新进展[J]. 粉末冶金工业, 2001, 11(6): 7-16. LUO Xiyu.Current progress of materials produced by spark plasma sintering[J]. Powder Metallurgy Idustry, 2001, 11(6): 7-16. [26] BALÁZSI C S, GILLEMOT F, HORVÁTH M, et al. Preparation and structural investigation of nanostructured oxide dispersed strengthened steels[J]. Journal of Materials Science, 2011, 46(13): 4598-4605. [27] HIRSCHHORN J S.Introduction to Powder Metallurgy[M]. New York: American Powder Metallurgy Institute, 1969: 245-247. |
|
|
|