|
|
Effects of Cu content on friction and wear behavior of (Ti-8Si)-xCu alloy |
ZHAO Qian, XU Xiaojing, RU Jinming, SHI Xiaodong, WANG Ya |
Engineering Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang, 2012013, China |
|
|
Abstract (Ti-8Si)-xCu (x=0, 5, 10 and 20%) alloy were prepared by powder metallurgy method using Ti, Si and Cu powder as raw materials. The effects of Cu content on the hardness and friction and wear properties at room temperature of Ti-8Si alloy were studied through hardness testing, room temperature dry sliding friction test and observation and analysis of the friction surface morphology and element composition. The results show that, adding Cu powder can improve the hardness of Ti-8Si alloy. The hardness of (Ti-8Si)-5Cu alloy is the highest, HV reaches 1 434.4, which is 40.4% higher than that of Ti-8Si alloy (1 021.5). The surface hardness of (Ti-8Si)-10Cu is almost equal to that of (Ti-8Si)-20Cu alloy, and HV is 1 180.9 and 1 171.9 respectively. The friction coefficient of the alloy increases from 0.36 to 0.6 by adding Cu. However, adding the appropriate amount of Cu can obviously improve the wear resistance of the alloy, and the volume wear volume (0.014 3 mm3) of 95 (Ti-8Si)-5Cu alloy is about half of the Ti-8Si alloy (0.026 2 mm3). The wear volume of (Ti-8Si)-10Cu alloy is reduced by 13.7% than Ti-8Si alloy. The wear volume of the (Ti-8Si)-20Cu alloy increases sharply to 2.5 times that of the Ti-8Si alloy. The wear forms of 95 (Ti-8Si)-5Cu alloy are mainly abrasive wear and adhesive wear, accompanied by slight oxidation wear. The other 3 alloys are mainly fatigue wear and oxidation wear, with a certain degree of abrasive wear and adhesive wear.
|
Received: 10 May 2017
Published: 12 July 2019
|
|
|
|
|
[1] 朱知寿, 王新南, 商国强, 等. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36(3): 7-12. ZHU Zhishou, WANG Xinnan, SHANG Guoqiang, et al.Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials, 2016, 36(3): 7-12. [2] TANG Z, WILLIAMS J J, THOM A J, et al.High temperature oxidation behavior of Ti5Si3-based inter-metallics[J]. Intermetallics, 2008, 16(9): 1118-1124. [3] 刘全明, 张朝辉, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-3. LIU Quanming, ZHANG Zhaohui, LIU Shifeng, et al.Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-3. [4] 叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012, 26(20): 360-363. YE Yong, WANG Jinyan.An overview on application status and processing technology development of titanium alloy[J]. Materials Review, 2012, 26(20): 360-363. [5] 王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010, 20(1): 958-963. WANG Dingchun.Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 958-963. [6] 刘彬, 刘延斌, 杨鑫, 等. TITANIUM 2008:国际钛工业、制备技术与应用的发展现状[J]. 粉末冶金材料科学与工程, 2009, 14(2): 67-73. LIU Bin, LIU Yanbin, YANG Xin, et al.TITANIUM 2008: Development of international titanium industry, preparation technology and applications[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(2): 67-73. [7] 王慧萍, 李军, 李芳, 等. 钛合金表面激光熔覆TiC涂层显微结构和耐磨性[J]. 实验室研究与探索, 2012, 31(2): 8-11. WANG Huiping, LI Jun, LI Fang, et al.Microstructure and wearresistance of laser cladding TiC coat on titanium alloy[J]. Research and Exploration in Laboratory, 2012, 31(2): 8-11. [8] 姬寿长, 李争显, 罗小峰, 等. TC21钛合金表面无氢渗碳层耐磨性分析[J]. 稀有金属材料与工程, 2014, 43(12): 3114-3119. JI Shouchang, LI Zhengxian, LUO Xiaofeng, et al.Wearability analysis of hydrogen-free carburized coating on TC21 titanium alloy surface[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3114-3119. [9] 沈志超, 谢发勤, 吴向清, 等. TC4钛合金铜镀层的性能[J]. 中国表面工程, 2012, 25(5): 45-49. SHEN Zhichao, XIE Faqin, WU Xiangqing, et al.Properties of coating on TC4 titanium alloy by copper electroplating[J]. China Surface Engineering, 2012, 25(5): 45-49. [10] RAO K P, ZHOU J B.Characterization of mechanically alloyed Ti-Al-Si powder blends and their subsequent thermal stability[J]. Materials Science and Engineering, 2002, 338: 282-298. [11] 刘元富, 赵海云, 王华明. 激光熔敷Ti5Si3/NiTi2复合材料涂层的组织与耐磨性[J]. 材料研究学报, 2002, 16(3): 313-318. LIU Yuanfu, ZHAO Haiyun, WANG Huaming.Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic wear resistant composite coating[J]. Chinese Journal of Materials Research, 2002, 16(3): 313-318. [12] 李嘉宁, 巩水利, 王娟, 等. Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响[J]. 金属学报, 2014, 50(5): 547-554. LI Jianing, GONG Shuili, WANG Juan, et al.Influence of Cu on microstructures and wear resistance of stellite 12 matrix laser alloying coatings on TA15-2 titanium alloy[J]. Acta Metallurgica Sinica, 2014, 50(5): 547-554. [13] 冯作明, 曹仕秀, 朱达川, 等. Cu对牙科用Ti-10Zr合金组织和耐磨性能的影响[J]. 稀有金属, 2010, 34(4): 480-484. FENG Zuoming, CAO Shixiu, ZHU Dachuan, et al.Effect of Cu on microstructure and abrasion of Ti-10Zr dental alloy[J]. Chinese Journal of Rare Metals, 2010, 34(4): 480-484. [14] 张晓化, 刘道新, 刘国华, 等. Cu/Ni多层膜对Ti811合金微动磨损和微动疲劳抗力的影响[J]. 实验室研究与探索, 2011, 40(2): 294-300. ZHANG Xiaohua, LIU Daoxin, LIU Guohua, et al.Effects of Cu/Ni multilayer film on fretting wear and fretting fatigue resistance of Ti811 alloys[J]. Rare Metal Materials and Engineering, 2011, 40(2): 294-300. [15] 姚小飞, 谢发勤, 王毅飞, 等. TC4钛合金表面镀Cu摩擦磨损性能的研究[J]. 稀有金属材料与工程, 2012, 41(12): 2135-2138. YAO Xiaofei, XIE Faqin, WANG Yifei, et al.Research on tribological and wear properties of Cu coating on TC4 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(12): 2135-2138. [16] 卢棋, 何国球, 杨洋, 等. 新型铜钛硅碳石墨合金材料的摩擦磨损性能[J]. 材料研究学报, 2015, 29(3): 216-220. LU Qi, HE Guoqiu, YANG Yang, et al.Friction and wear property of a new Cu-based Cu/Ti3SiC2/C composite[J]. Chinese Journal of Materials Research, 2015, 29(3): 216-220. [17] CHEN X J, ZENG M X, WANG R N, et al.First-principles study of (Ti5-xMgx)Si3 phases with the hexagonal D88 structure: Elastic properties and electronic structure[J]. Computational Materials Science, 2012, 54(1): 287-292. |
|
|
|