|
|
|
| Regulatory mechanisms of Na2CO3 and NaCl on the micro-nano morphology of CeO2 in the flux method |
| YANG Zhipeng, GAN Xueping, LIU Ronghui |
| State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
|
|
Abstract As an economically viable material with extensive applications, morphology regulation of CeO2 has remained a critical challenge. This study developed a flux method for spheroidizing blocky CeO2, with systematic investigation into the regulatory mechanisms of Na2CO3, NaCl, and their composite fluxes on CeO2 morphology. The results reveal flux type and concentration can significantly affect the spheroidization process of CeO2. Na2CO3 facilitates micro-scale (~5 μm) quasi-spherical particle evolution above 900 ℃ through chemically activated mechanisms combining Na⁺ lattice intercalation and oxygen vacancy compensation. Optimized spherical CeO2 with sphericity index 0.80 is achieved at 1 000 ℃ when mass ratio of Na2CO3 and raw materials is 1.8∶10. Comparatively, NaCl-dominated systems generate nano-sized particles (500-800 nm) via physical fluxing effects but exhibit pronounced agglomeration. The composite flux system demonstrate antagonistic interactions between components, leading to degraded sphericity relative to single-component counterparts. This work confirms that process regulation can overcome intrinsic limitations of conventional solid-phase method morphology control. The Na2CO3-dominated system features operational simplicity, cost-effectiveness, and superior particle dispersibility, offering a scalable pathway for industrial synthesis of spherical CeO2 with precisely tunable diameters (1-10 μm).
|
|
Received: 16 May 2025
Published: 27 November 2025
|
|
|
|
|
|
[1] DUDNIK O V, LAKIZA S M, GRECHANYUK I M, et al.Composite ceramics for thermal barrier coatings produced from ZrO2 doped with yttrium-subgroup rare-earth metal oxides[J]. Powder Metallurgy and Metal Ceramics, 2021, 59(11): 672-680. [2] ZHENG W P, HAO L F, ZHOU Y, et al.Strengthen corrosion resistance of epoxy coating by synergy of oxygen vacancies of CeO2 nanoparticles as charge capture centers and BTA/TEOS[J]. Progress in Organic Coatings, 2024, 192: 108481. [3] SUKUMARAN J, VENKATESAN R, PRIYA M, et al.Eco-friendly synthesis of CeO2 nanoparticles using Morinda citrifolia L. leaf extracts: evaluation of structural, antibacterial, and anti-inflammatory activity[J]. Inorganic Chemistry Communications, 2024, 170: 113411. [4] RAY S K, DAHAL R, ASHIE M D, et al.Recent progress on cerium oxide-based nanostructures for energy and environmental applications[J]. Advanced Energy and Sustainability Research, 2025, 6(10): 2500022. [5] 高天佐, 于晓丽, 张玉玺, 等. 不同形貌二氧化铈的制备及其紫外屏蔽性能研究[J]. 湿法冶金, 2018, 37(6): 497-500. GAO Tianzuo, YU Xiaoli, ZHANG Yuxi, et al.Preparation and UV-shielding properties of ceria with different morphologies[J]. Hydrometallurgy of China, 2018, 37(6): 497-500. [6] DUDNIK O V, LAKIZA S M, GRECHANYUK M I, et al.Composite ceramics for thermal-barrier coatings produced from zirconia doped with rare earth oxides[J]. Powder Metallurgy and Metal Ceramics, 2022, 61(7): 441-450. [7] WANG J S, SUN J B, JING Q S, et al.Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2018, 38(7): 2841-2850. [8] ZHU Y Z, WANG W X, CHEN G J X, et al. Influence of Ni doping on oxygen vacancy-induced changes in structural and chemical properties of CeO2 nanorods[J]. Crystals, 2024, 14(8): 746-755. [9] MISHRA A K, WILLOUGHBY J, ESTES S L, et al.Impact of morphology and oxygen vacancy content in Ni, Fe co-doped ceria for efficient electrocatalyst based water splitting[J]. Nanoscale Advances, 2024, 6(18): 4672-4682. [10] 文素芬, 邹金住, 周学凡, 等. 微米级二氧化硅空心微球的制备及表征[J]. 粉末冶金材料科学与工程, 2022, 27(3): 336-344. WEN Sufen, ZOU Jinzhu, ZHOU Xuefan, et al.Preparation and characterization of micron hollow silica microspheres[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(3): 336-344. [11] 吕凤程, 王丁, 李中林, 等. 水热法制备γ-AlOOH对酸性大红GR的吸附性能[J]. 粉末冶金材料科学与工程, 2022, 27(5): 550-558. LÜ Fengcheng, WANG Ding, LI Zhonglin, et al.Adsorption performance of acid scarlet GR by γ-Al OOH prepared with hydrothermal method[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 550-558. [12] 吴浩, 甘雪萍. 喷雾干燥法制备Cu-Al2O3复合粉末及其复合材料的组织与性能[J]. 粉末冶金材料科学与工程, 2023, 28(1): 74-82. WU Hao, GAN Xueping.Fabrication of Cu-Al2O3 composite powder by spray drying and its microstructure and properties[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(1): 74-82. [13] CHIBISOV A N, PUGACHEVSKII M A, KUZMENKO A P, et al.Effect of morphology and size on the thermodynamic stability of cerium oxide nanoparticles: experiment and molecular dynamics calculation[J]. Nanotechnology Reviews, 2022, 11(1): 620-624. [14] ZHANG C Y, JIA J C, CHANG Y, et al.The corrosion resistant Pt5Ce-CeO2 structure provides significant oxygen reduction catalysis[J]. International Journal of Hydrogen Energy, 2024, 51: 1169-1175. [15] 陈欢欢. 改性二氧化铈复合材料[M]. 北京: 化学工业出版社, 2024. CHEN Huanhuan.Modified Cerium Dioxide Composite Material[M]. Beijing: Chemical Industry Press, 2024. [16] FADZIL N A M, RAHIM M H A B, MANIAM G P. Brief review of ceria and modified ceria: synthesis and application[J]. Materials Research Express, 2018, 5(8): 085019. [17] 丁林敏. 铈基氧化物材料及前驱体的合成及抛光性能研究[D]. 南昌: 南昌大学, 2022. DING Linmin.Synthesis and polishing properties of cerium-based oxide materials and precursors[D]. Nanchang: Nanchang University, 2022. [18] 徐筱李, 韦宝禧, 侯金丽, 等. 典型纳米多孔隔热材料文献综述[C]// 中国航天第三专业信息网, 中国科协航空发动机产学联合体. 中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集, 2019: 129-141. XU Xiaoli, WEI Baoxi, HOU Jinli, et al.Literature review of typical nanoporous thermal insulation materials[C]// China Aerospace Third Professional Information Network, CAST Alliance for Aero-Engine Industry and Academy. Conference Proceedings of 40th Technical Exchange Conference of China Aerospace Third Professional Information Network and 4th Aerospace Power Joint Conference, 2019: 129-141. [19] LU X X, ZHAO X, ZHANG J Y, et al.Spherical CeO2 synthesized by molten-salt with unique fast variable valence properties for lithium-ion battery anode[J]. Materials Letters, 2023, 349: 134780. [20] SONG S P, LI Y J, BAI S B, et al.Production of spherical polymeric composite powder for selective laser sintering via plasma assisted solid state shear milling: from theory to piezoelectric application[J]. Chemical Engineering Journal, 2021, 415: 129035. [21] YANG B, WANG A Q, LIU K D, et al.Effects of CeO2 on the Si precipitation mechanism of SiCp/Al-Si composite prepared by powder metallurgy[J]. Materials, 2020, 13(19): 4365-4374. [22] BJØRK R. The sintering behavior of ellipsoidal particles[J]. Journal of the American Ceramic Society, 2022, 105(10): 6427-6436. [23] TACHIBANA M.Beginner’s Guide to Flux Crystal Growth[M]. Berlin: Springer, 2017. [24] SANTIAGO R T, FABIÁN M, ŠEPELÁK V, et al. Local structure analysis of Bi2(Ga1-xFex)4O9 mullite-type solid solutions synthesized via combination of ball milling and thermal treatment[J]. Solid State Sciences, 2018, 82(1): 106-110. [25] GRADY Z, NDAYISHIMIYE A, ZAENGLE T, et al. Progress and opportunities in the application of cold sintering to solid-state, electrochemical,ceramic devices[J]. ECS Meeting Abstracts, 2021, MA2021-02: 1382. [26] ALAM M A, YA H B, AZEEM M, et al.Advancements in aluminum matrix composites reinforced with carbides and graphene: a comprehensive review[J]. Nanotechnology Reviews, 2023, 12: 20230111. [27] BONDIOLI F, MANFREDINI T, KOMARNENI S.Synthesis and characterisation of nanosize CeO2 powders by flux method[C]// VINCENZINI P. Advances in Science and Technology. Faenza, Italy: Techna, 1999: B293-B300. [28] LIANG Y J, YU D Y, HUANG W Z, et al.Molten salt synthesis and luminescent properties of nearly spherical YAG:Ce phosphor[J]. Materials Science in Semiconductor Processing, 2015, 30: 92-97. [29] DAN X, WANG C, XU X, et al.Improving the sinterability of CeO2 by using plane-selective nanocubes[J]. Journal of the European Ceramic Society, 2019, 39(14): 4429-4434. [30] LAN X, LI Z B, ZHANG H, et al.Effect of rare earth oxide doping on microstructure and mechanical property of Mo-30 W solid solution alloy[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 106014. [31] MANIVANNAN V, PARHI P, KRAMER J W.Metathesis synthesis and characterization of complex metal fluoride, KMF3 (M=Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation[J]. Bulletin of Materials Science, 2008, 31(7): 987-993. [32] KIM G H, SOHN I.Effects of alkali metal cations and fluoride anions on viscosity and structure of CaO-SiO2-Al2O3 system[J]. Journal of Materials Research and Technology, 2022, 20: 2335-2347. [33] BAO S S, YU D M, TANG Z, et al.Conformationally regulated “nanozyme-like” cerium oxide with multiple free radical scavenging activities for osteoimmunology modulation and vascularized osseointegration[J]. Bioactive Materials, 2024, 34: 64-79. [34] WU X X, WEI J X, ZHANG T, et al.Novel synthesis of in situ CeOx nanoparticles decorated on CoP nanosheets for highly efficient electrocatalytic oxygen evolution[J]. Inorganic Chemistry Frontiers, 2021, 8(20): 4440-4447. [35] 段淑贞. 熔盐化学:原理和应用[M]. 北京: 冶金工业出版社, 1990. DUAN Shuzhen.Molten Salt Chemistry: Principles and Applications[M]. Beijing: Metallurgical Industry Press, 1990. [36] 曾燕伟. 无机材料科学基础: 第2版[M]. 武汉: 武汉理工大学出版社, 2015. ZENG Yanwei.Scientific Fundamentals of Inorganic Materials: 2nd Edition[M]. Wuhan: Wuhan University of Technology Press, 2015. |
|
|
|