|
|
Biphasic flow ablation properties and ablation resistance mechanisms of C/SiC-ZrB2-TiB2 composites |
ZHANG Jiancheng, ZENG Yi, HU Jinrun, LI Tianyou, WANG Jiajun |
Powder Metallurgy Research Institute, Central South University, Changsha 430081, China |
|
|
Abstract The C/SiC-ZrB2-TiB2 composites were prepared by reactive melt infiltration process. The ablation properties of the composites were tested under a single plasma heat flow and a biphasic flow ablation environment in which the heat flow was coupled with the particle flow, respectively, and the ablation resistance mechanism of the composites was investigated. The results show that the C/SiC-ZrB2-TiB2 composites exhibit excellent ablation resistance in both thermal environments. The linear ablative rates of the composites are 0.38 μm/s and 19.80 μm/s under the action of single heat flow at ablation temperatures of 1 920 ℃ and 2 230 ℃, respectively, and a stable oxide layer consisting of ZrxTi1-xO2 skeleton and liquid filled phase is formed on the surface, which can slow down the ablation. The linear ablative rates of the composites under biphasic flow are 2.93 μm/s and 21.91 μm/s at ablation temperatures of 2 020 ℃ and 2 190 ℃, respectively. SiC-ZrB2-TiB2 ceramic matrix and its oxide layer can maintain sufficient strength at higher temperatures to resist particle exfoliation, and the carbon fibre ablation level is low, which can provide a better reinforcement and toughening effect.
|
Received: 24 May 2023
Published: 23 January 2024
|
|
|
|
|
[1] WU S J, CHENG L F, ZHANG L T, et al.Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating[J]. Surface and Coatings Technology, 2006, 200(14/15): 4489-4492. [2] CHRISTIN F.Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites[J]. Advanced Engineering Materials, 2002, 4(12): 903-912. [3] XIE J, LI K Z, LI H J, et al.Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3 000 ℃[J]. Ceramics International, 2013, 39(4): 4171-4178. [4] LIU L, LI H J, SHI X H, et al.Effects of SiC addition on the ablation properties of C/C composites in different heat fluxes under oxyacetylene torch[J]. Vacuum, 2013, 90: 97-99. [5] FANG X F, LIU F S, XIA B, et al.Formation mechanisms of characteristic structures on the surface of C/SiC composites subjected to thermal ablation[J]. Journal of the European Ceramic Society, 2016, 36(3): 451-456. [6] 李凰立. 再入弹头的气动加热及热响应分析[D]. 西安: 西北工业大学, 2001. LI Huangli.Aerodynamic heat and the thermal response of reentry missile[D]. Xi’an: Northwestern Polytechnical University, 2001. [7] 黄序, 夏智勋, 黄利亚, 等. 氧化性气氛中镁颗粒燃烧特性研究进展[J]. 含能材料, 2013, 21(3): 379-386. HUANG Xu, XIA Zhixun, HUANG Liya, et al.Research progress on combustion characteristics of magnesium particles in oxidizing atmospheres[J]. Chinese Journal of Energetic Materials, 2013, 21(3): 379-386. [8] LUO S B, FENG Y B, SONG J W, et al.Progress and challenges in exploration of powder fueled ramjets[J]. Applied Thermal Engineering, 2022, 213: 118776. [9] SHI Y A, ZHA B L, SUN Z S, et al.Air plasma ablation/erosion test for 4D C/C composites used in the throat of solid rocket motor[J]. Ceramics International, 2022, 48(11): 15582-15593. [10] LUO L, WANG Y G, LIU L P, et al.Ablation behavior of C/SiC composites in plasma wind tunnel[J]. Carbon, 2016, 103: 73-83. [11] LI Q, LI J, HE G Q, et al.Erosion of carbon/carbon composites using a low-velocity, high-particle-concentration two-phase jet in a solid rocket motor[J]. Carbon, 2014, 67: 140-145. [12] 向秋玲, 汤振霄, 彭可, 等. HfB2-ZrB2-SiC 改性 C/C 复合材料的制备及性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 118-124. XIANG Qiuling, TANG Zhenxiao, PENG Ke, et al.Preparation and properties of HfB2-ZrB2-SiC modified C/C composites[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 118-124. [13] ZHANG X, CHEN Z K, XIONG X, et al.Morphology and microstructure of ZrB2-SiC ceramics after ablation at 3 000 ℃ by oxy-acetylene torch[J]. Ceramics International, 2016, 42(2): 2798-2805. [14] ZENG Y, WANG D, XIONG X, et al.Ultra-high-temperature ablation behavior of SiC-ZrC-TiC modified carbon/carbon composites fabricated via reactive melt infiltration[J]. Journal of the European Ceramic Society, 2020, 40(3): 651-659. [15] XIA Y N, MOU J, DENG G Y, et al.Sintered ZrO2-TiO2 ceramic composite and its mechanical appraisal[J]. Ceramics International, 2020, 46(1): 775-785. [16] KHASKHOUSSI A, CALABRESE L, BOUHAMED H, et al.Mixture design approach to optimize the performance of TiO2 modified zirconia/alumina sintered ceramics[J]. Materials & Design, 2018, 137: 1-8. [17] KHASKHOUSSI A, CALABRESE L, BOUAZIZ J, et al.Effect of TiO2 addition on microstructure of zirconia/alumina sintered ceramics[J]. Ceramics International, 2017, 43(13): 10392-10402. [18] 王皓, 王为民. 热压烧结TiB2-ZrB2 固溶复合陶瓷的结构研究[J]. 硅酸盐学报, 2002, 30(4): 486-490. WANG Hao, WANG Weimin.Study on the structure of TiB2-ZrB2 composites prepared by hot pressing[J]. Journal of the Chinese Ceramic Society, 2002, 30(4): 486-490. [19] OMURZAK E, MASHIMO T, IWAMOTO C, et al.Synthesis of blue amorphous TiO2 and TinO2n-1 by the impulse plasma in liquid[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(11): 6372-6375. [20] 罗磊. C/SiC及其改性复合材料在等离子风洞中的烧蚀行为研究[D]. 西安: 西北工业大学, 2018. LUO Lei.Ablation behavior of C/SiC composites in plasma wind tunnel[D]. Xi’an: Northwestern Polytechnical University, 2018. [21] FAHRENHOLTZ W G.Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 2007, 90(1): 143-148. [22] 马爱琼, 蒋明学. TiB2陶瓷材料氧化动力学研究[J]. 陶瓷, 2006(7): 19-21. MA Aiqiong, JIANG Mingxue.The study on oxidative dynamic of TiB2 ceramic[J]. Ceramics, 2006(7): 19-21. [23] SHI A H, YANG X, FANG C Q, et al.Microstructure and ablation behavior of Zr-Ti-Si-C multiphase coating fabricated by solid solution and in-situ reaction[J]. Corrosion Science, 2021, 192: 109852. [24] BROSSMANN U, WÜRSCHUM R, SÖDERVALL U, et al. Oxygen diffusion in ultrafine grained monoclinic ZrO2[J]. Journal of Applied Physics, 1999, 85(11): 7646-7654. [25] VAUGHN W L, MAAHS H G.Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air[J]. Journal of the American Ceramic Society, 1990, 73(6): 1540-1543. [26] BALAT M.Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air[J]. Journal of the European Ceramic Society, 1996, 16(1): 55-62. [27] LI J, EVENO P, HUNTZ A M.Oxidation of SiC[J]. Materials & Corrosion, 1990, 41(12): 716-725. [28] LI C, NIU Y R, LIU T, et al.Effect of WB on oxidation behavior and microstructure evolution of ZrB2-SiC coating[J]. Corrosion science, 2019, 155: 155-163. [29] LI J C, ZHANG Y L, LÜ J S, et al.Sealing role of Ti-rich phase in HfC-ZrC-TiC coating for C/C composites during ablation above 2 100 ℃[J]. Corrosion Science, 2022, 205: 110474. [30] HAN J C, HU P, ZHANG X H, et al.Oxidation-resistant ZrB2-SiC composites at 2 200 ℃[J]. Composites Science and Technology, 2008, 68(3/4): 799-806. [31] LIU L, FENG W, LI B Y, et al.Particle erosion of C/C-SiC composites with different Al addition in reactive melt infiltrated Si[J]. Journal of Central South University, 2020, 27(9): 2557-2566. |
|
|
|