|
|
Effects of MgF2 doping on structure and microwave property of 0.95MgTiO3-0.05CaTiO3 ceramics |
RAN Wen, LIU Fan, LI Hao, LIU Shaojun |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract MgF2 doped 0.95MgTiO3-0.05CaTiO3 (95MCT) microwave ceramics were synthesized by solid-phase reaction. The effects of MgF2 doping on the sintering temperature, crystal structure, microstructure and microwave properties of 95MCT ceramics were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and vector network analyzer. The results show that a small amount of MgF2 doping can promote the uniform growth of ceramic grains. The addition of MgF2 inhibits the transition of Ti4+ ions to Ti3+ ions and enhances the Ti—O bonding strength of [TiO6] octahedra, thus significantly improving the quality factor of ceramics from 30 335 GHz to 89 470 GHz. MgF2 doped with 1% (mass fraction) of 95MCT ceramic sintered at 1 225 ℃ has excellent microwave properties: the relative permittivity εr is about 19.74, the Q×f value is about 89 470 GHz, and the resonant frequency temperature coefficient τf is about -10.2×10-6 ℃-1.
|
Received: 17 March 2023
Published: 06 July 2023
|
|
|
|
|
[1] HILL M D, CRUICKSHANK D B, MACFARLANE I A.Perspective on ceramic materials for 5G wireless communication systems[J]. Applied Physics Letters, 2021, 118(12): 120501. [2] 段佳露, 周港怀, 刘绍军. 低介电常数MgxZn1.8-xSiO3.8微波陶瓷的结构与性能[J]. 粉末冶金材料科学与工程, 2022, 27(3): 276-283. DUAN Jialu, ZHOU Ganghuai, LIU Shaojun.Structure and properties of MgxZn1.8-xSiO3.8 microwave ceramics with low dielectric constant[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(3): 276-283. [3] ZHANG J, YUE Z, ZHOU Y, et al.Microwave dielectric properties and thermally stimulated depolarization currents of (1 - x)MgTiO3-xCa0.8Sr0.2TiO3 ceramics[J]. Journal of the American Ceramic Society, 2015, 95(5): 1548-1554. [4] PAN C L, SHEN C H, CHEN P C, et al.Characterization and dielectric behavior of a new dielectric ceramics MgTiO3- Ca0.8Sr0.2TiO3 at microwave frequencies[J]. Journal of Alloys and Compounds, 2010, 503(2): 365-369. [5] CHEN Y C, TSAO S M, LIN C S, et al.Microwave dielectric properties of 0.95MgTiO3-0.05CaTiO3 for application in dielectric resonator antenna[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 347-351. [6] TEMPLETON A, WANG X R, PENN S J, et al.Microwave dielectric loss of titanium oxide[J]. Journal of the American Ceramic Society, 2000, 83(1): 95-100. [7] WANG Y, ZUO R, ZHANG J, et al.Sintering behavior and microwave dielectric properties of Li2O-B2O3-SiO2 doped MgTiO3-CaTiO3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 4963-4968. [8] HUANG C L, PAN C L.Low-temperature sintering and microwave dielectric properties of (1-x)MgTiO3-xCaTiO3 ceramics using bismuth addition[J]. Materials Research Bulletin, 2002, 37(3): 563-574. [9] HUANG C L, HOU J L, PAN C L, et al.Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95MgTiO3-0.05CaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2008, 450(1/2): 359-363. [10] HUANG C L, HSU C S.Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature[J]. Materials Research Bulletin, 2001, 36(15): 2677-2687. [11] CHEN Y B.Improved high Q value of MgTiO3-CaTiO3 microwave dielectric resonator using WO3-doped at lower sintering temperature for microwave applications[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 657-660. [12] HAO Y Z, YANG H, CHEN G H, et al.Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications[J]. Journal of Alloys and Compounds, 2013, 552: 173-179. [13] ZHANG J, ZHOU Y Y, PENG B, et al.Microwave dielectric properties and thermally stimulated depolarization currents of MgF2-doped diopside ceramics[J]. Journal of the American Ceramic Society, 2014, 97(11): 3537-3543. [14] YUAN S F, GAN L G, NING F F, et al.High-Q×f 0.95MgTiO3-0.05CaTiO3 microwave dielectric ceramics with the addition of LiF sintered at medium temperatures[J]. Ceramics International, 2018, 44(16): 20566-20569. [15] XU Z P, LI L X, YU S H, et al.Magnesium fluoride doped MgTiO3 ceramics with ultra-high Q value at microwave frequencies[J]. Journal of Alloys and Compounds, 2019, 802: 1-5. [16] LI H, LIU F, LIU S J.Relationship between distortion of crystal structure and dielectric properties of complex perovskite oxide Ba(Co,Zn)1/3Nb2/3O3 thin films[J]. Journal of the European Ceramic Society, 2022, 42(14): 6518-6526. [17] 孔树, 程立金, 刘绍军. (Mg4-xZnx)Ta2O9微波陶瓷的结构和介电性能[J]. 粉末冶金材料科学与工程, 2017, 22(3): 354-359. KONG Shu, CHENG Lijin, LIU Shaojun.Crystal structure and dielectric properties of (Mg4-xZnx)Ta2O9 microwave ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(3): 354-359. [18] CHENG L, LIU P, QU S X, et al.Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method[J]. Journal of Alloys and Compounds, 2015, 623: 238-242. [19] WANG C H, JING X P, FENG W, et al.Assignment of raman-active vibrational modes of MgTiO3[J]. Journal of Applied Physics, 2008, 104(3): 034112. [20] FERRI E A V, SCZANCOSKI J C, CAVALCANTE L S, et al. Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting[J]. Materials Chemistry and Physics, 2009, 117(1): 192-198. [21] JO H J, KIM J S, KIM E S.Microwave dielectric properties of MgTiO3-based ceramics[J]. Ceramics International, 2015, 41(1): S530-S536. [22] KIM E S, CHUN B S, KANG D H.Effects of structural characteristics on microwave dielectric properties of (1-x)Ca0.85Nd0.1TiO3-xLnAlO3(Ln=Sm, Er and Dy) ceramics[J]. Journal of the European Ceramic Society, 2007, 27(8/9): 3005-3010. [23] MASTELARO V R, LISBOA-FILHO P N, NEVES P P, et al. X-ray photoelectron spectroscopy study on sintered Pb1-xLaxTiO3 ferroelectric ceramics[J]. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156/157/158: 476-481. [24] SHI T, ZHANG F, SUN W Y, et al.Fabrication, sinterability and microwave dielectric properties of MgTiO3-(Ca0.8Sr0.2) TiO3 composite ceramics from nanosized powders[J]. Vacuum, 2022, 201: 11107. [25] WANG L, YANG G R, PENG S J, et al.Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity[J]. International Journal of Hydrogen Energy, 2017, 42(41): 25882-25890. [26] WANG Y T, CHENG J, YU S Y, et al.Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity[J]. Scientific Reports, 2016, 6(1): 32711. [27] HU Q, TENG Y, ZHAO X, et al.Temperature stable dielectric properties of Mg2TiO4-MgTiO3-CaTiO3 ceramics over a wide temperature range[J]. Ceramics International, 2023, 49(2): 1997-2006. [28] JO H J, KIM E S.Enhanced quality factor of MgTiO3 ceramics by isovalent Ti-site substitution[J]. Ceramics International, 2016, 42(4): 5479-5486. [29] KIM E S, SEO S N.Dependence of dielectric properties on structural characteristics of (Zn1/3A2/3)0.5(Ti1-xBx)0.5O2(A= Nb5+, Ta5+, B=Ge4+, Sn4+) ceramics at microwave frequencies[J]. Journal of the European Ceramic Society, 2010, 30(2): 319-323. |
|
|
|