|
|
Simulation of crack propagation and mechanical properties prediction of graphene-carbon nanotubes/WC ceramic tool materials |
ZHAO Wenlong1, SUN Jialin2, HUANG Zhifu1, ZHAO Le3, LI Xiao3 |
1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; 2. School of Mechanical, Electrical and Information Engineering, Shandong University (Weihai), Weihai 264209, China; 3. Weihai Weiying Tool Co., Ltd., Weihai 264210, China |
|
|
Abstract The rapid development of computer simulation technology provides theoretical and technical support for the performance prediction and high-throughput preparation of ceramic tool materials. In this paper, a parametric model and mechanical property prediction model of WC ceramic tool materials containing graphene (G) and carbon nanotube (CNT) were constructed based on Python software. The influence of G-CNT on the microstructure and crack propagation behavior of tool materials was mainly studied. The results show that the three-dimensional G-CNT spatial structure can further improve the properties of WC ceramics compared with single G. When the mass fraction of G-CNT is 0.4%, the tool material has the best comprehensive mechanical properties. The strengthening and toughening mechanism mainly include the super-mixed distribution of G-CNT strong and weak interfaces, material fracture mode transformation, crack deflection, etc.
|
Received: 13 August 2022
Published: 04 May 2023
|
|
|
|
|
[1] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933. HUANG Boyun, WEI Weifeng, LI Songlin, et al.Modern powder metallurgy materials and technical progress[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1917-1933. [2] 邹芹, 李爽, 李艳国. 无粘结相WC硬质合金的研究进展[J]. 硬质合金, 2021, 38(4): 297-305. ZOU Qin, LI Shuang, LI Yanguo.Research progress of WC cemented carbide with unbonded phase[J]. Cemented Carbide, 2021, 38(4): 297-305. [3] SUN J L, ZHAO J, GONG F, et al.Development and application of WC-based alloys bonded with alternative binder phase[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 44(3): 211-238. [4] SUN J L, ZHAO J, HUANG Z, et al.A review on binderless tungsten carbide: development and application[J]. Nano-Micro Letters, 2020, 12(1): 1-37. [5] 高建祥, 范景莲. 无粘结相WC基硬质合金研究进展[J]. 中国钨业, 2011, 26(6): 22-26. GAO Jianxiang, FAN Jinglian.Research progress of WC-based cemented carbide with unbonded phase[J]. China Tungsten Industry, 2011, 26(6): 22-26. [6] BASTIAN S, BUSCH W, KÜHNEL D , et al. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro[J]. Environmental Health Perspectives, 2009,117(4): 530-536. [7] SUN J L, ZHAO J, CHEN Y, et al.Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites[J]. Materials Today Physics, 2022, 22: 100595. [8] SUN J L, ZHAO J, CHEN Y, et al.Toughening in low-dimensional nanomaterials high-entropy ceramic nanocomposite[J]. Composites Part B: Engineering, 2022, 231: 109586. [9] SUN J L, ZHAO J, GONG F, et al.Design, fabrication and characterization of multi-layer graphene reinforced nanostructured functionally graded cemented carbides[J]. Journal of Alloys and Compounds, 2018, 750: 972-979. [10] 蔡伟金, 李青, 刘耀, 等. 流延制备有序排列石墨烯增韧氧化锆陶瓷的结构与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 104-111. CAI Weijin, LI Qing, LIU Yao, et al.Structure and mechanical properties of ordered graphene-toughened zirconia ceramics prepared by tape casting[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 104-111. [11] SUN J L, ZHAI P, CHEN Y, et al.Hierarchical toughening of laminated nanocomposites with three-dimensional graphene/ carbon nanotube/SiC nanowire[J]. Materials Today Nano, 2022, 18: 100180. [12] SUN J L, CHEN Y, ZHAI P, et al.Tribological performance of binderless tungsten carbide reinforced by multilayer graphene and SiC whisker[J]. Journal of the European Ceramic Society, 2022, 42(12): 4817-4824. [13] SUN J L, ZHAO J, HUANG Z F, et al.Hybrid multilayer graphene and SiC whisker reinforced TiB2 based nano-composites by two-step sintering[J]. Journal of Alloys and Compounds, 2021, 856: 157283. [14] RAHMAN O S, SRIBALAJI M, MUKHERJEE B, et al.Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites[J]. Ceramics International, 2018, 44(2): 2109-2122. [15] YAZDANI B, XIA Y, AHMAD I, et al.Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites[J]. Journal of the European Ceramic Society, 2015, 35(1): 179-186. [16] 宋晓艳, 赵世贤, 刘雪梅, 等. 超细晶硬质合金显微组织与断裂路径的体视学表征研究[J]. 中国体视学与图像分析, 2011, 16(2): 131-136. SONG Xiaoyan, ZHAO Shixian, LIU Xuemei, et al.Stereological characterization of microstructures and fracture paths of ultra-fine grained cemented carbides[J]. Chinese Journal of Stereology and Image Analysis, 2011, 16(2): 131-136. [17] 张伟彬, 杜勇, 彭英彪, 等. 研发硬质合金的集成计算材料工程[J]. 材料科学与工艺, 2016, 24(2): 1-28. ZHANG Weibin, DU Yong, PENG Yingbiao, et al.Integrated computing materials engineering for research and development of hard alloy[J]. Materials Science and Technology, 2016, 24(2): 1-28. [18] ZHAO W L, SUN J L, HUANG Z F.Three-dimensional graphene-carbon nanotube reinforced ceramics and computer simulation[J]. Ceramics International, 2021, 47(24): 33941-33955. [19] GHOSH S, LIU Y.Voronoi cell finite element model based on micropolar theory ofthermoelasticity for heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 1995, 38(8): 1361-1398. [20] CHEN F, YAN K, ZHANG X H, et al.Microscale simulation method for prediction of mechanical properties and composition design of multilayer graphene-reinforced ceramic bearings[J]. Ceramics International, 2021,47(12): 17531-17539. [21] WANG D, ZHAO J, ZHAO J B, et al.Microstructure-level modeling and simulation of the flexural behavior of ceramic tool materials[J]. Computational Materials Science, 2014, 83(15): 434-442. [22] ZHOU T, HUANG C, LIU H, et al.Crack propagation simulation in microstructure of ceramic tool materials[J]. Computational Materials Science, 2012, 54: 150-156. [23] ESPINOSA H D, ZAVATTIERI P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials theory and numerical implementation[J]. Mechanics of Materials, 2003, 35(3): 333-364. [24] SUN Z Y, ZHAO X Y, MA J S.Characterization of microstructures in sisal fiber composites by Voronoi diagram[J]. Journal of Reinforced Plastics and Composites, 2013, 32(1): 16-22. [25] 黄永霞, 郭然, 李伟. 颗粒增强复合材料有效模量的Voronoi单元有限元法分析[J]. 重庆大学学报, 2016, 39(5): 63-72. HUANG Yongxia, GUO Ran, LI Wei.Analysis of effective modulus of particle reinforced composites by voronoi element finite element method[J]. Journal of Chongqing University, 2016, 39(5): 63-72. [26] DUGDALE D S.Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. [27] BARENBLATT G I.The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129. [28] ZAVATTIERI P D, ESPINOSA H D.Grain level analysis of crack initiation and propagation in brittle materials[J]. Acta Materialia, 2001, 49(20): 4291-4311. [29] XU X P, NEEDLEMAN A.Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. [30] RAHUL-KUMA R P, JAGOTA A, BENNOSON S J, et al. Polymer interfacial fracture simulations using cohesive elements[J]. Acta Materialia, 1999, 47(15): 4161-4169. [31] SU X, YANG Z, LIU G.Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus[J]. Acta Mechanica Solida Sinica, 2010, 23(3): 271-282. [32] ZHANG Y P, XIAO G C, XU C H, et al.Cohesive element model for fracture behavior analysis of Al2O3/graphene composite ceramic tool material[J]. Crystals, 2019, 9(12): 669-678. [33] BRIAN L.脆性固体断裂力学[M]. 龚江宏译. 北京: 高等教育出版社, 2010: 18-19. BRIAN L.Fracture Mechanics of Brittle Solids[M]. GONG Jianghong translate. Beijing: Higher Education Press, 2010: 18-19. [34] 李作丽. 石墨烯强韧化氧化铝基陶瓷刀具研制与切削性能研究[D]. 济南: 山东大学, 2018. LI Zuoli.Development of graphene toughened alumina-based ceramic tool and research on cutting performance[D]. Jinan: Shandong University, 2018. [35] YU H B, HUANG C Z, LIU H L, et al.A 3D cohesive element model for fracture behavior analysis of ceramic tool materials microstructure[J]. Materials Science Forum, 2012, 723: 119-123. [36] NEEDLEMAN A.Numerical simulations of fast crack growth in brittle solids[J]. Science, 1994, 42(9): 1397-1434. [37] 黄刘刚. 内聚力模型的分析及有限元子程序开发[D]. 郑州: 郑州大学, 2010. HUANG Liugang.Analysis of cohesion model and development of finite element subroutine[D]. Zhengzhou: Zhengzhou University, 2010. [38] JOHANSSON S A E, PETISME M V G, WAHNSTRÖM G. A computational study of special grain boundaries in WC-Co cemented carbides[J]. Computational Materials Science, 2015, 98(15): 345-353. [39] LEE M, GILMORE R S.Single crystal elastic constants of tungsten monocarbide[J]. Journal of Materials Science, 1982, 17(9): 2657-2660. [40] ORTIZ-MEMBRADO L, CUADRADO N, CASELLAS D, et al.Measuring the fracture toughness of single WC grains of cemented carbides by means of microcantilever bending and micropillar splitting[J]. International Journal of Refractory Metals and Hard Materials, 2021, 98: 105529. [41] CSANÁDI T, VOJTKO M, DUSZA J. Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87: 105163. [42] ZHANG Y P, PAN C X.Measurements of mechanical properties and number of layers of graphene from nano-indentation[J]. Diamond and Related Materials, 2012, 24: 1-5. [43] ZHANG P, MA L L, FAN F F, et al.Fracture toughness of graphene[J]. Nature Communications, 2014(5): 3782. [44] SUMIT S, PRAMOD K, RAKESH C.Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites: a molecular dynamics study[J]. Journal of Composite Materials, 2017, 51(23): 3299-3313. [45] ZHOU T T, HUANG C Z, LIU H L, et al. Simulation of fracture behavior in the microstructure of ceramic tool[J]. Advanced Materials Research, 2012, 457/458: 89-92. [46] TOMAR V, ZHAI J, ZHOU MIN.Bounds for element size in a variable stiffness cohesive finite element model[J]. International Journal for Numerical Methods in Engineering, 2004, 61(11): 1894-1920. [47] EVANS A, WILSHAW T, CHESNUTT J, et al.Quasi-static solid particle damage in brittle materials[J]. Acta Metallurgica, 1976, 24(10): 939-956. [48] US-ASTM.Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature: ASTM-C1421-18[S]. Pennsylvania, American: ASTM, 2018: 1-33. [49] US-ASTM.Standard test methods for flexural strength of advanced ceramics at ambient temperature: ASTM-C1161- 18[S]. Pennsylvania, American: ASTM, 2018: 1-19. [50] MUKHERJEE B, RAHMAN A, ISIAM A, et al.Plasma sprayed carbon nanotube and graphene nanoplatelets reinforced alumina hybrid composite coating with outstanding toughness[J]. Journal of Allays and Compounds, 2017, 727: 658-670. [51] SUN D M, JIANG X S, SU L L, et al.Fabrication and mechanical properties of Al2O3-TiC ceramic composites synergistically reinforced with multi-walled carbon nanotubes and graphene nanoplates[J]. Ceramics International, 2020, 46(12): 20068-20080. [52] RICE R W.Mechanical Properties of Ceramics and Composites[M]. Boca Raton: CRC Press, 2000. |
|
|
|