[1] OLAYIDE R A, RIDWAN A A, PETER O A, et al.Tensile, hardness and microstructural properties of Sn-Pb solder alloys[J]. Materials Today: Proceedings, 2021, 44(1): 321-325.
[2] WOODMANSEE M W, NEU R W.Effect of stress and strain state on heterogeneous coarsening in Sn-Pb solder[J]. Acta Materialia, 2006, 54(1): 197-207.
[3] ZHANG N X, KAWASAKI M, HUANG Y, et al.An examination of microstructural evolution in a Pb-Sn eutectic alloy processed by high-pressure torsion and subsequent self-annealing[J]. Materials Science and Engineering A, 2021, 802:140653.
[4] LIU X W, PLUMBRIDGE W J.Thermomechanical fatigue of Sn-37wt.%Pb model solder joints[J]. Materials Science and Engineering A, 2003, 362(1/2): 309-321.
[5] SHUN F C, HUANG C M, PECHT M.A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77-95.
[6] 张海坡, 阮建明. 电子封装材料及其技术发展状况[J]. 粉末冶金材料科学与工程, 2003(3): 216-223.
ZHANG Haipo, RUAN Jianming.Development of electronic packaging materials and technology[J]. Journal of Materials Science and Engineering for Powder Metallurgy, 2003(3): 216-223.
[7] 张富文, 刘静, 杨福宝, 等. 无铅电子封装焊料的研究现状与展望[J]. 材料导报, 2005(11): 47-49, 64.
ZHANG Fuwen, LIU Jing, YANG Fubao, et al.Research status and prospect of lead-free solder for electronic packaging[J]. Materials Review, 2005(11): 47-49, 64.
[8] 常玲玲, 何新波, 吴茂, 等. 微电子封装用SiCp/Al复合材料的中温钎焊[J].粉末冶金材料科学与工程, 2010, 15(3): 219-224.
CHANG Lingling, HE Xinbo, WU Mao, et al.Middle temperature brazing of SiCP/Al composites for microelectronics packaging[J]. Journal of Materials Science and Engineering of Powder Metallurgy, 2010, 15(3): 219-224.
[9] WISLEI R O, LEANDRO C P, LEANDRO R G, et al.Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys[J]. Journal of Alloys and Compounds, 2013, 572: 97-106.
[10] ChENG S F, HUANG C M, PECHT M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75:77-95.
[11] MARUYA Y, HATA H, SHOHJI I, et al.Bonding characteristics of Sn-57Bi-1Ag low-temperature lead-free solder to gold-plated copper[J]. Procedia Engineering, 2017, 184, 223.
[12] HIREN R K, PHILIP D H, SAMJID H M.A review: On the development of low melting temperature Pb-free solders[J]. Microelectronics Reliability, 2014, 54: 1253-1273.
[13] 黄明亮, 任婧. 低温无铅钎料合金系研究进展[J]. 电子元件与材料, 2020, 39(10): 1-10.
HUANG Mingliang, REN Jing.Research progress of low temperature lead-free solder alloy system[J]. Electronic Components and Materials, 2020, 39(10): 1-10.
[14] LIU J C, ZHANG G, WANG Z H, et al.Thermal property, wettability and interfacial characterization of novel Sn-Zn-Bi-In alloys as low-temperature lead-free solders[J]. Materials and Design, 2015, 84: 331-339.
[15] ZHOU S Q, YANG C H, SHEN Y A, et al.The newly developed Sn-Bi-Zn alloy with a low melting point, improved ductility, and high ultimate tensile strength[J]. Materialia, 2019, 6: 100300.
[16] EL-DALY A A, HAMMAD A E. Elastic properties and thermal behavior of Sn-Zn based lead-free solder alloys[J]. Journal of Alloys and Compounds, 2010, 505(2): 793-800.
[17] 李琴, 雷永平, 符寒光, 等. Sn-Bi-In低温无铅钎料的组织和性能[J]. 稀有金属材料与工程, 2017, 46(10): 3038-3042.
LI Qin, LEI Yongping, FU Hanguang, et al.Microstructure and properties of Sn-Bi-In lead-free solder at low temperature[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3038-3042.
[18] 李威, 李萌蘖, 卜恒勇. Sn-Bi-In合金焊料及相图计算基础[J]. 稀有金属, 2020, 44(2): 195-204.
LI Wei, LI Mengnie, BU Hengyong.Calculation of phase diagram of Sn-Bi-In alloy solder[J]. Rare Metals, 2020, 44(2): 195-204.
[19] MANASIJEVIĆ D, BALANOVI Ć L, MARKOVI Ć I, et al.Microstructure, melting behavior and thermal conductivity of the Sn-Zn alloys[J]. Thermochimica Acta, 2021, 702: 178978.
[20] SHALABY R M.Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys[J]. Materials Science and Engineering A, 2013, 560: 86-95.
[21] ÖZTÜRK E, AKSÖZ S, KESLIOGLU K, et al. The measurement of thermal conductivity variation with temperature for Sn-20wt.% In based lead-free ternary solders[J]. Thermochimica Acta, 2013, 554: 63-70.
[22] LI C J, YAN Y F, GAO T T, et al.The influence of Ag on the microstructure, thermal properties and mechanical behavior of Sn-25Sb-xAg high temperature lead-free solder[J]. Vacuum, 2021, 185: 110015.
[23] SAYYADI R, MOOSAVY H N.Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x=0, 1, 2.5, 5wt%) solders[J]. Materials Science and Engineering A, 2018, 735(26): 367-377.
[24] RAI A K, TRPATHY H, HAJRA R N, et al.Thermophysical properties of Ni based super alloy 617[J]. Journal of Alloys and Compounds, 2017, 698: 442-449.
[25] DAI S J, WANG Y, CHEN F, et al.Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3027.
[26] PARK J, LEE S B, KANG S G, et al.Complex effects of alloy composition and porosity on the phase transformations and mechanical properties of powder metallurgy steels[J]. Powder Technology, 2015, 284: 459-466.
[27] 杨永春. 基于JMatPro软件15CrMo渗碳钢淬火组织与热物理力学性能预测[J]. 热加工工艺, 2013, 42(20): 184-187.
YANG Yongchun.Prediction of quenched microstructure and thermal physical and mechanical properties of 15CrMo carburized steel based on JMatPro software[J]. Hot Working Technology, 2013, 42(20):184-187.