|
|
|
| Effects of heat treatment on microstructure and thermo-mechanical properties of thin-layered C/C composites |
| LI Haimei1, LIU Zaidong1, QIAO Zhiwei1, 2, YE Zhiyong1, LIU Junwen1, LI Zhiqiang1, WEI Yanbin1, YU Wenhao1, LONG Quanyuan1, LU Li1, WEN Qingbo1, WANG Yalei1, XIONG Xiang1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Nanjing Fiberglass Research & Design Institute Co., Ltd, Nanjing 210012, China |
|
|
|
|
Abstract In this study, thin-layered C/C composites with a spread-stitching architecture were prepared by chemical vapor deposition. The effects of high-temperature heat treatment on the microstructure, mechanical and thermal expansion properties of the C/C composites were systematically investigated. The results indicate that high-temperature heat treatment leads to a reduction of shear strength at interface between the carbon fiber and pyrolytic carbon, while simultaneously enhancing the degree of graphitization in both materials. After high-temperature heat treatment, the tensile strength of the C/C composites increases from 112.3 MPa to 195.3 MPa, which is primarily attributed to the weakened interfacial shear strength. In contrast, the compressive strength decreases from 300.0 MPa to 121.6 MPa, mainly due to the degradation of interlaminar bonding strength, with interlayer delamination identified as the dominant failure mode. Furthermore, the enhanced graphitization degree of the C/C composites after high-temperature heat treatment is demonstrated to be the primary factor governing the increase in modulus and the reduction in the coefficient of thermal expansion of the composites.
|
|
Received: 29 April 2025
Published: 27 November 2025
|
|
|
|
|
|
[1] SALVO M, CASALEGNO V, VITUPIER Y, et al.Study of joining of carbon/carbon composites for ultra stable structures[J]. Journal of the European Ceramic Society, 2010, 30(7): 1751-1759. [2] WEI X Y, WANG Y, XUE P C, et al.Carbon fiber composite honeycomb structures and the application for satellite antenna reflector with high precision[J]. Advances in Astronautics Science and Technology, 2022, 5(4): 423-441. [3] KRUMWEIDE D E, WONACOTT G D, WOIDA P M, et al.Carbon-carbon mirrors for exoatmospheric and space applications[C]// GOODMAN W A, ROBICHAUD J L. Optical Materials and Structures Technologies Ⅲ. Bellingham, Washington, USA: Society of Photo-Optical Instrumentation Engineers, 2007: 66660H. [4] TAKEYA H, KUME M, HAHN S, et al.Development of ultra-light-weight mirror with carbon/carbon composites for optical-IR astronomy[C]// MATHER J C, Optical, Infrared, and Millimeter Space Telescopes. Bellingham, Washington, USA: Society of Photo-Optical Instrumentation Engineers, 2004: 1084-1091. [5] GUO L, WANG H, YANG Y P, et al.A multi-scale damage model and mechanical behavior for novel light-weight C/C honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, 25: 2097-2111. [6] GUO L J, ZHANG F C, LI W J, et al.Effect of void defects on mechanical behavior and failure features of C/C honeycomb structure[J]. Thin-Walled Structures, 2024, 199: 111745. [7] 武豪, 李玮洁, 张中伟, 等. 曲面碳/碳蜂窝制备及其均布载荷下的力学性能[J]. 复合材料学报, 2024, 41(9): 4932-4941. WU Hao, LI Weijie, ZHANG Zhongwei, et al.Preparation of curved carbon/carbon honeycomb and its mechanical properties under uniform load[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4932-4941. [8] 韩清壮, 向阳, 彭志航, 等. 防隔热一体化材料研究进展[J]. 粉末冶金材料科学与工程, 2025, 30(2): 79-100. HAN Qingzhuang, XIANG Yang, PENG Zhihang, et al.Research progress of anti-thermal insulation materials[J]. Materials Science and Engineering of Powder Metallurgy, 2025, 30(2): 79-100. [9] 杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 40(12): 6639-6648. YANG Yuping, ZHANG Zhongwei, LI Weijie, et al.Preparation process, compression and shear behavior of carbon/carbon honeycomb[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6639-6648. [10] 刘宇峰, 张中伟, 许正辉, 等. 空间高稳定碳/碳蜂窝夹层结构制备及性能[J]. 宇航学报, 2020, 41(8): 1067-1075. LIU Yufeng, ZHANG Zhongwei, XU Zhenghui, et al.Preparation and properties of carbon/carbon honeycomb sandwich panels for space ultra-stable structures[J]. Journal of Astronautics, 2020, 41(8): 1067-1075. [11] FEI Y B, LU J H, LI H J, et al.Influence of heat treatment temperature on microstructure and thermal expansion properties of 2D carbon/carbon composites[J]. Vacuum, 2014, 102: 51-53. [12] LIAO X L, LI H J, XU W F, et al.Study on the thermal expansion properties of C/C composites[J]. Journal of Materials Science, 2007, 42: 3435-3439. [13] SONG L C, MENG S H, ZHANG Y, et al.Exploring the multi-scale evolution mechanism of the ultra-high- temperature mechanical behaviour of carbon/carbon composites[J]. Journal of Alloys and Compounds, 2025, 1010: 177449. [14] XIA L H, HUANG B Y, ZHANG F Q, et al.Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix[J]. Materials and Design, 2016, 107: 33-40. [15] SUN J J, LI H J, HAN L Y, et al.Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification[J]. Journal of Materials Science and Technology, 2019, 35(3): 383-393. [16] GAO Z L, YUAN Z Y, YANG Y, et al.Microstructural transformation impact on mechanical and tribological performance of different temperature heat-treated carbon/ carbon composites[J]. Ceramics International, 2024, 50(19): 36099-36111. [17] REZNIK B, HÜTTINGER K J. On the terminology for pyrolytic carbon[J]. Carbon, 2002, 40(4): 621-624. [18] HATTA H, AOI T, KAWAHARA I, et al.Tensile strength of carbon-carbon composites: Ⅱ: effect of heat treatment temperature[J]. Journal of Composite Materials, 2004, 38(19): 1685-1699. [19] RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. A methodology to measure the interface shear strength by means of the fiber push-in test[J]. Composites Science and Technology, 2012, 72(15): 1924-1932. [20] YANG X B, ZHAN L H, PENG Y F, et al.Interface controlled micro-and macro-mechanical properties of vibration processed carbon fiber/epoxy composites[J]. Polymers, 2021, 13(16): 2764. [21] DING J X, MA X K, FAN X M, et al.Failure behavior of interfacial domain in SiC-matrix based composites[J]. Journal of Materials Science and Technology, 2021, 88: 1-10. [22] OZCAN S, TEZCAN J, GURUNG B, et al.The effect of heat treatment temperature on the interfacial shear strength of C/C composites[J]. Journal of Materials Science, 2011, 46: 38-46. [23] WANG T Y, LI H J, ZHANG S Y, et al.The effect of microstructural evolution on micromechanical behavior of pyrolytic carbon after heat treatment[J]. Diamond and Related Materials, 2020, 103: 107729. [24] KUNTZ M, GRATHWOHL G.Advanced evaluation of push‐in data for the assessment of fiber reinforced ceramic matrix composites[J]. Advanced Engineering Materials, 2001, 3(6): 371-379. [25] YE Z Y, WANG Y L, XIONG X, et al.Microstructure, interfacial and mechanical properties of SiC interphase modified C/C-SiC composites prepared by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2024, 44(15): 116785. [26] HUANG R, ZENG F H, PENG Y R, et al.Influence of fiber/matrix interface on the texture evolution and fracture toughness of C/C[J]. Diamond and Related Materials, 2022, 127: 109112. [27] JIANG Z Y, CHEN Q F, FAN B L, et al.Microstructure and properties of PAN-based carbon fiber with different graphitization temperature (up to 3 000 ℃)[J]. Diamond and Related Materials, 2025, 152: 111953. [28] 刘红浩, 曾凡浩, 张福勤. 放电等离子烧结下碳化硼对聚丙烯腈基碳纤维石墨化的影响[J]. 粉末冶金材料科学与工程, 2022, 27(6): 601-609. LIU Honghao, ZENG Fanhao, ZHANG Fuqin.Effect of boron carbide on graphitization of polyacrylonitrile based carbon fibers during spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6): 601-609. [29] ZHOU G H, LIU Y Q, HE L L, et al.Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites[J]. Carbon, 2011, 49(9): 2883-2892. [30] ALY-HASSAN M S, HATTA H, WAKAYAMA S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078. [31] HATTA H, SUZUKI K, SHIGEI T, et al.Strength improvement by densification of C/C composites[J]. Carbon, 2001, 39(1): 83-90. [32] 徐一溪, 杨丰豪, 王喜云, 等. 热处理对PAN基炭纤维微观结构和力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2): 147-153. XU Yixi, YANG Fenghao, WANG Xiyun, et al.Effects of heat treatment on the microstructure and mechanical property of PAN-based carbon fibers[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 147-153. [33] 庞生洋, 胡成龙, 杨鸷, 等. 预制体结构对C/C复合材料力学性能、断裂行为以及热物性能的影响[J]. 机械工程学报, 2018, 54(9): 97-107. PANG Shengyang, HU Chenglong, YANG Zhi, et al.Effects of preform structures on the mechanical properties, fracture behaviors and thermophysical properties of C/C composites[J]. Journal of Mechanical Engineering, 2018, 54(9): 97-107. [34] HATTA H, GOTO K, AOKI T.Strengths of C/C composites under tensile, shear, and compressive loading: role of interfacial shear strength[J]. Composites Science and Technology, 2005, 65(15): 2550-2562. [35] 黄伯云, 熊翔. 高性能炭/炭航空制动材料的制备技术[M]. 长沙: 湖南科学技术出版社, 2007: 266-268. HUANG Boyun, XIONG Xiang.Manufacturing of Carbon/Carbon Composites for Aircraft Brakes[M]. Changsha: Hunan Science & Technology Press, 2007: 266-268. [36] PIAT R, SCHNACK E. Identification of coefficients of thermal expansion of pyrolytic carbon with different texture degrees[J]. Key Engineering Materials, 2003, 251/252: 333-338. [37] PRADERE C, SAUDER C.Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2 500 K)[J]. Carbon, 2008, 46(14): 1874-1884. [38] LUO R Y, LIU T, LI J S, et al.Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42(14): 2887-2895. |
|
|
|