|
|
First-principles calculation of electrochemical properties of Al/Mg co-doped Li2MnO3 |
ZENG Zhiquan1, ZHANG Shiwei2, WANG Jianchuan1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. College of Energy and Electrical Engineering, Qinghai University, Xining 810016, China |
|
|
Abstract Dual-ion doping is an effective method to improve the electrochemical properties and cycle stability of Li2MnO3, a lithium-rich manganese-based cathode material. However, the influencing mechanism of the subtle interaction between doped ions on the performance of Li2MnO3 is still unclear. This study investigated the lattice structure, electronic structure, O stability, and Li diffusion dynamics of Mg single doped and Mg/Al co-doped Li2MnO3 through first-principles calculation. The results show that compared with Mg single doping case, Mg/Al co-doping can cause significant lattice distortion, enhance the electrochemical activity of local O, but also sacrifice some O stability, and promote the intralayer diffusion of local Li. This study highlights the differences in the effects of Mg/Al co-doping and Mg single doping on the electrochemical properties of Li2MnO3, providing a theoretical basis for optimizing the design of lithium-rich manganese-based cathode materials.
|
Received: 03 April 2024
Published: 12 August 2024
|
|
|
|
|
[1] 高婷婷, 王新强, 邝向军, 等. 纤锌矿结构AlInN电子及光学性质的第一性原理研究[J]. 原子与分子物理学报, 2011, 28(5): 963-968. GAO Tingting, WANG Xinqiang, KUANG Xiangjun, et al.First-principles study of electronic and optical properties of wurtzite AlInN[J]. Journal of Atomic and Molecular Physics, 2011, 28(5): 963-968. [2] DING C, WANG Y, TANG T, et al.Joint analysis of the spatial impacts of built environment on car ownership and travel mode choice[J]. Transportation Research Part D: Transport and Environment, 2018, 60: 28-40. [3] 张思玉, 陈敏健, 马骋, 等. 双位点配位聚合物改性的无钴富锂锰基正极材料电化学性能研究[J]. 粉末冶金材料科学与工程, 2022, 27(1): 83-91. ZHANG Siyu, CHEN Minjian, MA Cheng, et al.Study on electrochemical performance of cobalt-free lithium-rich manganese-based cathode material modified by dual-site coordination polymer[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(1): 83-91. [4] VENDRA V K, NGUYEN T Q, THAPA A K, et al.Scalable synthesis and surface stabilization of Li2MnO3 NWs as high rate cathode materials for Li-ion batteries[J]. RSC Advances, 2015, 5(46): 36906-36912. [5] CHEN Z, LI J, ZENG X C.Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers[J]. Journal of the American Chemical Society, 2019, 141(27): 10751-10759. [6] LI F, ZHANG X, LIN J, et al.Unveiling the role of oxygen vacancy in Li2MnO3 upon delithiation[J]. The Journal of Physical Chemistry C, 2019, 123(38): 23403-23409. [7] YU D Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. Journal of the Electrochemical Society, 2009, 156(6): A792-A797. [8] SHIMODA K, OISHI M, MATSUNAGA T.Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process[J]. Journal of Materials Chemistry A, 2017, 5: 6695-6707. [9] GAO Y, MA J, WANG Z, et al.Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3[J]. Physical Chemistry Chemical Physics, 2017, 19(10) : 7025-7031. [10] LEE Y, PARK H, CHO M K, et al.Li-rich Mn-Mg layered oxide as a novel Ni/Co-free cathode[J]. Advanced Functional Materials, 2022, 32(36) : 2204354. [11] 王非, 翟欢欢, 王杜丹, 等. Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究[J]. 电化学, 2020, 26(1): 148-155. WANG Fei, ZHAI Huanhuan, WANG Dudan, et al.Study on the structure and electrochemical performance of Sn-Cl co-doped lithium ion cathode material Li2MnO3[J]. Electrochemistry, 2020, 26(1): 148-155. [12] NAYAK P K, GRINBLAT J, LEVI E, et al.Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6142-6152. [13] 王镇江, 盖琪欣, 王云婷, 等. 铝掺杂锰酸锂正极材料制备及第一性原理研究[J]. 原子与分子物理学报, 2021, 38(3): 135-141. WANG Zhenjiang, GAI Qixin, WANG Yunting, et al.Preparation and first-principles study of aluminum-doped lithium manganese oxide cathode materials[J]. Journal of Atomic and Molecular Physics, 2021, 38(3): 135-141. [14] TORRES-CASTRO L, SHOJAN J, JULIEN C M, et al.Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3[J]. Materials Science & Engineering B, 2015, 201: 13-22. [15] ZHANG D, LI W, LI N, et al.Enhanced electrochemical performance of 0.4Li2MnO3-0.6LiMn0.35Ni0.3Co0.35-xAlxO2[J]. International Journal of Electrochemical Science, 2018, 13(7): 6402-6413. [16] WANG J, LIN W, WU B, et al.Porous LiNi0.5Mn1.5O4 sphere as 5 V cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(39): 16434-16442. [17] LIU Y, HUANG X, QIAO Q, et al.Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for lithium ion batteries[J]. Electrochimica Acta, 2014, 147: 696-703. [18] ATANASOV M, DAUL C, BARRAS J L, et al.Polarizable continuum model for lithium interface transitions between a liquid electrolyte and an intercalation electrode[J]. Solid State Ionics, 1999, 121(1/4): 165-174. [19] WANG F, LI S, SUN Q, et al.First-principles study of structural and electronic properties of zincblende AlxIn1-xN[J]. Solid State Sciences, 2010, 12(9): 1641-1644. [20] ZHANG S, WANG J, TAO X, et al.Understanding the different effects of 4d-transition metals on the performance of Li-rich cathode Li2MnO3 by first-principles[J]. Physical Chemistry Chemical Physics, 2023, 25(3): 2282-2293. [21] ZHANG S, WANG J, LIU H, et al.Revealing the different effects of VIB transition metals X (X=Cr, Mo, W) on the electrochemical performance of Li-rich cathode Li2MnO3 by first-principles calculations[J]. Nanoscale, 2022, 14(40): 15034-15047. [22] HOANG K.Doping Li-rich cathode material Li2MnO3: interplay between lattice site preference, electronic structure, and delithiation mechanism[J]. Physical Review Materials, 2017, 1(7): 075404. [23] REN X, LI D, ZHAO Z, et al.Aluminum doping and lithium tungstate surface coating double effect to improve the cycle stability of lithium-rich manganese-based cathode materials[J]. Applied Chemical Engineering, 2022, 5(2): 67-76. [24] TORRES-CASTRO L, ABREU-SEPULVEDA M A, KATIYAR R S, et al. Electrochemical investigations on the effect of Mg-substitution in Li2MnO3 cathode[J]. Journal of the Electrochemical Society, 2017, 164(7): A1464-A1473. [25] YAN W, XIE Y, JIANG J, et al.Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4625-4632. [26] LI Z, CHERNOVA N A, FENG J, et al.Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(2): A116-A120. [27] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [28] HOHENBERG P, KOHN W.Density functional theory (DFT)[J]. Physical Review, 1964, 136(1964): B864-B871. [29] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [30] ANISIMOV V I, ZAANEN J, ANDERSEN O K.Band theory and Mott insulators: hubbard U instead of stoner I[J]. Physical Review B, 1991, 44(3) : 943-954. [31] ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA+U[J]. Physical Review B, 2004, 70(23): 235121. [32] LIU M, RONG Z, MALIK R, et al.Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations[J]. Energy & Environmental Science, 2015, 8(3): 964-974. [33] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904. [34] STROBEL P, LAMBERT-ANDRON B.Crystallographic and magnetic structure of Li2MnO3[J]. Journal of Solid State Chemistry, 1988, 75(1): 90-98. [35] JIN X, XU Q, LIU H, et al.Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26. [36] XIAO R, LI H, CHEN L.Density functional investigation on Li2MnO3[J]. Chemistry of Materials, 2012, 24(21): 4242-4251. [37] LEE E, PERSSON K A.Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations[J]. Advanced Energy Materials, 2014, 4(15): 1400498. [38] SHIN Y, DING H, PERSSON K A.Revealing the intrinsic Li mobility in the Li2MnO3 lithium-excess material[J]. Chemistry of Materials, 2016, 28(7): 2081-2088. [39] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. [40] AYDINOL M, KOHAN A, CEDER G, et al.Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B, 1997, 56(3): 1353-1365. [41] ZHANG S, WANG J, LEI T, et al.First-principles study of Mn antisite defect in Li2MnO3[J]. Journal of Physics: Condensed Matter, 2021, 33(41): 415201. |
|
|
|