|
|
Research progress on the fabrication technology of porous alumina ceramics |
HE Xiang1, HUANG Qianli1, CHEN Yuhui2, LIU Bowei1, LIU Yong1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Shenzhen Changlong Technology Co., Ltd., Shenzhen 518100, China |
|
|
Abstract Porous alumina ceramics are widely used as refractory materials, electrical insulators, wear-resistant mechanical parts, filtering materials and catalytic support due to their excellent mechanical properties, corrosion resistance, large specific surface area and stable chemical properties. The pores in porous alumina ceramics are commonly created by partial sintering, replica, sacrificial template or direct foaming method. Specific porous structure and porosity can be obtained by employing appropriate pore-creating method. Conventional sintering of alumina ceramics is usually characterized by high temperature, long duration, easy formation of coarse grains and residual pores. The application of advanced sintering technologies such as oscillatory pressure sintering, spark plasma sintering and microwave sintering can effectively overcome these shortcomings and comprehensively improve material properties. In order to provide references for the investigation, development and application of novel porous alumina ceramics, we reviewed the research progress on two aspects including pore-creating method and sintering technology involved in the fabrication process of porous alumina ceramics.
|
Received: 02 August 2021
Published: 22 December 2021
|
|
|
|
|
[1] MARTIENSSEN W, WARLIMONT H.Springer Handbook of Condensed Matter and Materials Data[M]. NewYork, USA: Springer Science & Business Media, 2005.
[2] GUZMAN I Y.Certain principles of formation of porous ceramic structures. properties and applications (a review)[J]. Glass and Ceramics, 2003, 60(9): 280-283.
[3] AHMAD R, HA J H, SONG I H.Processing methods for the preparation of porous ceramics[J]. Journal of Korean Powder Metallurgy Institute, 2014, 21(5): 389-398.
[4] OH S T, TAJIMA K I, ANDO M, et al.Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing[J]. Journal of the American Ceramic Society, 2000, 83(5): 1314-1316.
[5] MURAYAMA N.What we can do by pulse electric current sintering[J]. Ceramics Japan, 1997, 32(6): 445-449.
[6] KINGERY W D, BOWEN H K, UHLMANN D R.Introduction to Ceramics[M]. 2nd edition. New York, USA: John Wiley and Sons, 1976.
[7] YANG Y, WANG Y, TIAN W, et al.In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders[J]. Scripta Materialia, 2009, 60(7): 578-581.
[8] JAIN H, KUMAR R, GUPTA G, et al.Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template[J]. Materials Chemistry and Physics, 2020, 242: 122273.
[9] LUYTEN J, THIJS I, VANDERMEULEN W, et al.Strong ceramic foams from polyurethane templates[J]. Advances in Applied Ceramics, 2005, 104(1): 4-8.
[10] RICHARDSON J T, PENG Y, REMUE D.Properties of ceramic foam catalyst supports: Pressure drop[J]. Applied Catalysis A General, 2000, 204(1): 19-32.
[11] TANG X Y, ZHANG E J, ZHANG X Y, et al.Design and for mulation of polyurethane foam used for porous alumina deramics[J]. Journal of Polymer Research, 2018, 25(6): 1-10.
[12] SHERMAN A J, TUFFIAS R H, KAPLAN R B.Refractory ceramic foams: A novel, new high-temperature structure[J]. American Ceramic Society Bulletin, 1991, 70(6): 1025-1029.
[13] CAO J, RAMBO C R, SIEBER H.Preparation of porous Al2O3-ceramics by biotemplating of wood[J]. Journal of Porous Materials, 2004, 11(3): 163-172.
[14] WHITE R A, WEBER J N, WHITE E W.Replamineform: A new process for preparing porous ceramic, metal, and polymer prosthetic materials[J]. Science, 1972, 176(4037): 922-924.
[15] STUDART A R, GONZENBACH U T, TERVOORT E, et al.Processing routes to macroporous ceramics: A review[J]. Journal of the American Ceramic Society, 2006, 89(6): 1771-1789.
[16] LEE C Y, LEE S, HA J H, et al.Effect of the processing conditions of reticulated porous alumina on the compressive strength[J]. Journal of the Korean Ceramic Society, 2021, 58(4): 495-506.
[17] BROWN D D, GREEN D J.Investigation of strut crack formation in open cell alumina ceramics[J]. Journal of the American Ceramic Society, 1994, 77(6): 1467-1472.
[18] LYCKFELDT O, FERREIRA J.Processing of porous ceramics by ‘starch consolidation’[J]. Journal of the European Ceramic Society, 1998, 18(2): 131-140.
[19] KIM J, HA J H, LEE J, et al.Effect of pore structure on gas permeability constants of porous alumina[J]. Ceramics International, 2019, 45(5): 5231-5239.
[20] SEGADA A M.Microstructure, permeability and mechanical behaviour of ceramic foams[J]. Materials Science and Engineering A, 1996, 209(1/2): 149-155.
[21] PARKHOMCHUK E V, FEDOTOV K V, SEMEYKINA V S, et al.Polystyrene microsphere-template method for textural design of alumina-an effective catalyst support for macromolecule conversion[J]. Catalysis Today, 2020, 353(SI): 180-186.
[22] LUYTEN J, MULLENS S, COOYMANS J, et al.New processing techniques of ceramic foams[J]. Advanced Engineering Materials, 2003, 5(10): 715-718.
[23] THIJS I, LUYTEN J, MULLENS S.Producing ceramic foams with hollow spheres[J]. Journal of the American Ceramic Society, 2004, 87(1): 170-172.
[24] ZHANG G J, YANG J F, OHJI T.Fabrication of porous ceramics with unidirectionally aligned continuous pores[J]. Journal of the American Ceramic Society, 2001, 84(6): 1395-1397.
[25] KATSUKI H, KAWAHARA A, ICHINOSE H.Preparation and some properties of porous alumina ceramics obtained by the gelatination of ammonium alginate[J]. Journal of Materials Science, 1992, 27(22): 6067-6070.
[26] CHEN Z W, XU G G, CUI H Z, et al.Preparation of porous Al2O3 ceramics by starch consolidation casting method[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1550-1558.
[27] BOWDEN M, RIPPEY M. Porous ceramics formed using starch consolidation[J]. Key Engineering Materials, 2002, 206/213(3): 1957-1960
[28] LI Y J, YANG X F, LIU D H, et al.Permeability of the porous Al2O3 ceramic with bimodal pore size distribution[J]. Ceramics International, 2019, 45(5): 5952-5957.
[29] GENG S L, SHEN P, HU Z J, et al.Formation mechanism and control of a large-scale lamellar structure in freeze-cast Al2O3 ceramics under dual temperature gradients[J]. Journal of the European Ceramic Society, 2018, 38(6): 2605-2611.
[30] FUKASAWA T, ANDO M, OHJI T, et al.Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232.
[31] FUKASAWA T, DENG Z Y, ANDO M, et al.Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. Journal of Materials Science, 2001, 36(10): 2523-2527.
[32] AKARTUNA I, STUDARTA R, TERVOORT E, et al.Macroporous ceramics from particle-stabilized emulsions[J].Advanced Materials, 2008, 20(24): 4714-4718.
[33] BEPPU Y, ANDO M, OHJI T.Control of porosity and pore size for porous alumina prepared from alpha-alumina, BaSO4 and/or SrSO4[J]. International Journal of Materials & Product Technology, 2001, 1: 209-214.
[34] KIM H, DA ROSA C, BOARO M, et al.Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet[J]. Journal of the American Ceramic Society, 2002, 85(6): 1473-1476.
[35] POKHREL A, SEO D N, LEE S T, et al.Processing of porous ceramics by direct foaming: A review[J]. Journal of the Korean Ceramic Society, 2013, 50(2): 93-102.
[36] ZHAO J, YANG C, SHIMAI S, et al.The effect of wet foam stability on the microstructure and strength of porous ceramics[J]. Ceramics International, 2018, 44(1): 269-274.
[37] DU Z P, YAO D X, XIA Y E, et al.Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International, 2020, 46(9): 12942-12747.
[38] RAO P R, MURALIDHARAN K, MOMAYEZ M, et al.Direct foaming driven synthesis and thermophysical characterization of silica-alumina foams: Applications for thermal insulation[J]. Ceramics International, 2020, 46(8): 10431-10441.
[39] SCHEITHAUER U, KERBER F, FüSSEL A, et al. Alternative process routes to manufacture porous ceramics—opportunities and challenges[J]. Materials, 2019, 12(4): 663.
[40] COLOMBO P, HELLMANN J R.Ceramic foams from preceramic polymers[J]. Materials Research Innovations, 2002, 6(5): 260-272.
[41] SEPULVEDA P.Gelcasting foams for porous ceramics[J]. American Ceramic Society Bulletin, 1997, 76(10): 61-65.
[42] ROMÁN-MANSO B, MUTH J, GIBSON L J, et al. Hierarchically porous ceramics via direct writing of binary colloidal gel foams[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8976-8984.
[43] CELANI A, BLACKBURN S, SIMMONS M J, et al.Formulation of ceramic foams: A new class of amphiphiles[J]. Colloids and Surfaces A, 2018, 536(SI): 104-112.
[44] REN B, LIU J J, WANG Y L, et al.Hierarchical cellular scaffolds fabricated via direct foam writing using gelled colloidal particle-stabilized foams as the ink[J]. Journal of the American Ceramic Society, 2019, 102(11): 6498-6506.
[45] REN J T, YING W, ZHAO J, et al.High-strength porous mullite ceramics fabricated from particle-stabilized foams via oppositely charged dispersants and surfactants[J]. Ceramics International, 2019, 45(5): 6385-6391.
[46] HAN Y, YANG J W, JUNG M, et al.Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration[J]. Langmuir, 2020, 36(35): 10331-10340.
[47] LIU J J, REN B, RONG Y D, et al.Highly porous alumina cellular ceramics bonded by in-situ formed mullite prepared by gelation-assisted Al2O3-Si particle-stabilized foams[J]. Ceramics International, 2020, 46(8): 12282-12287.
[48] AHMAD R, HA J H, SONG I H.Particle-stabilized ultra-low density zirconia toughened alumina foams[J]. Journal of the European Ceramic Society, 2013, 33(13/14): 2559-2564.
[49] GERMAN R M.Sintering Theory and Practice[M]. New York, USA: John Wiley and Sons, 1996.
[50] RAHAMAN M N.Ceramic Processing and Sintering[M]. Boca Raton, USA: CRC Press, 2003.
[51] 谢志鹏. 结构陶瓷[M]. 北京: 清华大学出版社, 2011.
XIE Zhipeng.Structural Ceramics[M], Beijing: Tsinghua University Press, 2011.
[52] GERMAN R M, PAVAN S, SEONG J P.Liquid phase sintering[J]. Journal of Materials Science 2009, 44(1): 1-39.
[53] ĆURKOVIĆ L, VESELI R, GABELICA I, et al.A review of microwave-assisted sintering technique[J]. Transactions of FAMENA, 2021, 45(1): 1-16.
[54] SINGH V K.Densification of alumina and silica in the presence of a liquid phase[J]. Journal of the American Ceramic Society, 1981, 64(10): 133-136.
[55] WANG H P, CHEN J M, YANG W Y, et al.Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics[J]. Journal of the European Ceramic Society, 2012, 32(3): 541-545.
[56] LU X C, LI G S, KIM J Y, et al.Enhanced sintering of β″- Al2O3/YSZwith the sintering aids of TiO2 and MnO2[J]. Journal of Power Sources, 2015, 295:167-174.
[57] YANG Y, MA M S, ZHANG F Q, et al.Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid[J]. Journal of the European Ceramic Society, 2020, 40(15): 5504-5510.
[58] WATARI K J, HWANG H J, TORIYAMA M, et al.Effective sintering aids for low-temperature sintering of AlN ceramics[J]. Journal of Materials Research, 1999,14(4): 1409-1417.
[59] ZHOU Y, HIRAO K, TORIYAMA M, et al.Effects of intergranular phase chemistry on the microstructure and mechanical properties of silicon carbide ceramics densified with rare-earth oxide and alumina additions[J]. Journal of the American Ceramic Society, 2001, 84(7): 1642-1644.
[60] KUMAR R, CHAUBEY A K, MAITY T, et al.Mechanical and tribological properties of Al2O3-TiC composite fabricated by spark plasma sintering process with metallic (Ni,Nb) binders[J]. Metals, 2018, 8(1): 50-58.
[61] TELLE R.Analysis of pressureless sintering of titanium diboride ceramics with nickel, cobalt, and tungsten carbide additives[J]. Journal of the European Ceramic Society, 2019, 39(7): 2266-2276.
[62] COBLE R L.Initial sintering of alumina and hematite[J]. Journal of the American Ceramic Society, 1958, 41(2): 55-62.
[63] BASU B, BALANI K.Advanced Structural Ceramics[M]. New Jersey, USA: John Wiley and Sons, 2011.
[64] HAN Y, LI S, ZHU T B, et al.An oscillatory pressure sintering of zirconia powder: Rapid densification with limited grain growth[J]. Journal of the American Ceramic Society, 2017, 100(7): 2774-2780.
[65] YUAN Y, FAN J Y, LI J S, et al.Oscillatory pressure sintering of Al2O3 ceramics[J]. Ceramics International, 2020, 46(10): 15670-15673.
[66] LIU D U, ZHANG X C, FAN J Y, et al.Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages[J]. Ceramics International, 2021, 47(16): 23682-2365.
[67] LI J S, FAN J Y, YUAN Y, et al.Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic[J]. Ceramics International, 2020, 46(9): 13240-13243.
[68] ZHU T B, XIE Z P, HAN Y, et al.Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering[J]. Ceramics International, 2018, 44(1): 505-510.
[69] GUILLON O, GONZALEZ‐JULIAN J, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849.
[70] SHEN Z J, JOHNSSON M, ZHAO Z, et al.Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927.
[71] MUNIR Z A, ANSELMITAMBURINI U, OHYANAGI M.The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method[J]. Journal of Materials Science, 2006, 41(3): 763-777.
[72] LANGER J, HOFFMANN M J, GUILLON O.Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina[J]. Acta Materialia, 2009, 57(18): 5454-5465.
[73] LIU Y, MIN F F, ZHU J B, et al.Effect of nanometer Al2O3 powder on microstructure and properties of alumina ceramics by microwave sintering[J]. Materials Science and Engineering A, 2012, 546: 328-331.
[74] YAN S Y, YIN Z B, YUAN J T, et al.Microstructure and properties of submicron grained alumina ceramic tool material prepared by two-step microwave sintering[J]. Ceramics International, 2018, 44(14): 17479-17485.
[75] HONG D B, YUAN J T, YIN Z B, et al.Ultrasonic-assisted preparation of complex-shaped ceramic cutting tools by microwave sintering[J]. Ceramics International, 2020, 46(12): 20183-20190.
[76] COLOGNA M, RASHKOVA B, RAJ R.Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559.
[77] COLOGNA M, RAJ R.Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field[J]. Journal of the American Ceramic Society, 2011, 94(2): 391-395.
[78] 谢志鹏, 许靖堃, 安迪. 先进陶瓷材料烧结新技术研究进展[J]. 中国材料进展, 2019, 38(9): 821-830, 886.
XIE Zhipeng, XU Jingkun, AN Di.Research progress of novel sintering technology for advanced ceramic materials[J]. Materials China, 2019, 38(9): 821-830, 886.
[79] BIESUZ M, SGLAVO V M.Flash sintering of alumina: Effect of different operating conditions on densification[J]. Journal of the European Ceramic Society, 2016, 36(10): 2535-2542.
[80] YOON B, YADAV D, GHOSE S, et al.Reactive flash sintering: MgO and α-Al2O3 transform and sinter into single-phase polycrystals of MgAl2O4[J]. Journal of the American Ceramic Society, 2019, 102(5): 2294-2303.
[81] OJAIMI C L, FERREIRA J A, CHINELATTO A L, et al.Microstructural analysis of ZrO2/Al2O3 composite: Flash and conventional sintering[J]. Ceramics International, 2020, 46(2): 2473-2480. |
[1] |
FANG Haojie, HE Yiwen, ZHANG Xiaoyun, NIU Wenbin, WU Lixiang, GUO Weiming, HUANG Rongxia, QIAO Guanjun, LIN Huatai, ZENG Xiong. Effects of sintering aids on microstructure and properties of non-isothermal sintering alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 525-530. |
|
|
|
|