|
|
Physicochemical properties of activated carbon for sintering flue gas desulfurization and denitrification |
ZHAO Hongwei1,2, HUANG Bangfu1,2, LIU Lanpeng1,2, LIU Weisai1,2, ZHAO Simeng1,2 |
1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. Clean Metallurgy Key Laboratory of Complex Iron Resources, Kunming 650093, China |
|
|
Abstract Activated carbon flue gas purification technology is an advanced technology suitable for sintering flue gas treatment and enabling waste resource utilization. SO2, NOx and other pollutants are adsorbed and catalyzed in the activated carbon tunnel. The adsorption and catalytic properties are mainly depended on the activated carbon physical structure and chemical property. In this study, the physical and chemical properties of coconut shell, nut shell and coal-based activated carbon, such as specific surface area, pore structure, surface morphology, phase composition, constituent elements and surface functional groups were characterized. The results show that the three activated carbons have large specific surface area and are amorphous carbon materials mainly composed of micropores. The main elements are carbon and oxygen, and also contain a small amount of sulfur and chlorine. The coconut shell activated carbon channels are arranged neatly and clearly. It can be seen that the surface of the shell and coal-based activated carbon is uneven, and it is difficult to clearly observe the microporous structure; the surface contains oxygen-containing functional groups closely related to adsorption and catalytic properties. The research results as a basic research on the modification of activated carbon can provide reference for optimizing the modification technology.
|
Received: 08 November 2018
Published: 11 July 2019
|
|
|
|
|
[1] 张洪亮, 施琦, 龙红明, 等. 烧结烟气中氮氧化物脱除工艺分析[J]. 钢铁, 2017, 52(5): 100-106. ZHANG Hongliang, SHI Qi, LONG Hongming, et al.Analysis of NOx removal process in sintering flue gas[J]. Iron & Steel, 2017, 52(5): 100-106. [2] 朱廷钰, 刘青, 李玉然, 等. 钢铁烧结烟气多污染物的排放特征及控制技术[J]. 科技导报, 2014, 32(33): 51-56. ZHU Tingyu, LIU Qing, LI Yuran, et al.Emission characteristics of multiple pollutants from iron-steel sintering flue gas and review of control technologies[J]. Science & Technology Review, 2014, 32(33): 51-56. [3] CHENG S, ZHANG L, MA A, et al.Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater[J]. Journal of Environmental Sciences, 2018(3): 92-102. [4] WANG G D, JIANG J C, SUN K, et al.An improved theoretical procedure for the pore-size analysis of activated carbon by gas adsorption[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 551-559. [5] 张晨, 王涛, 刘晓, 等. 活性炭担载的铂催化剂在碱性条件下选择性氧化甘油制备乳酸[J]. 催化学报, 2016(4): 502-509. ZHANG Chen, WANG Tao, LIU Xiao, et al.Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution[J]. Chinese Journal of Catalysis, 2016(4): 502-509. [6] SETHIA G, SAYARI A.Activated carbon with optimum pore size distribution for hydrogen storage[J]. Carbon, 2016, 99: 289-294. [7] DERIDDER D J, VERLIEFDE A R D, SCHOUTTETEN K, et al. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon[J]. Carbon, 2013, 53: 153-160. [8] NISLSEN L, BIGGS M J, SKINNER W, et al.The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole[J]. Carbon, 2014, 80: 419-432. [9] 王广建, 陈晓婷, 田爱秀, 等. 活性炭基水解催化剂的制备及其脱硫性能的研究[J]. 化学通报, 2017, 80(10): 942-943. WANG Guangjian, CHEN Xiaoting, TAIN Aixiu, et al.Preparation of Cu/AC catalyst and its application for desulfurization[J]. Chemistry, 2017, 80(10): 942-943. [10] 张立强, 蒋海涛, 马春元, 等. 烟气脱硫活性炭微波再生特性的实验研究[J]. 燃料化学学报, 2012(11): 1366-1371. ZHANG Liqiang, JIANG Haitao, MA Chunyuan, et al.Microwave regeneration characteristics of activated carbon for flue gas desulfurization[J]. Journal of Fuel Chemistry and Technology, 2012(11): 1366-1371. [11] QIPENG J, AIK C L.Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption[J]. Analytical and Applied Pyrolysis, 2008(83): 175-179. [12] 黄帮福, 耿朝阳, 施哲, 等. 载镍活性炭低温脱硫及其制备影响因素研究[J]. 生态环境学报, 2018, 27(1): 108-114. HUANG Bangfu, GENG Chaoyang, SHI Zhe, et al.Influence factors and preparation conditions of Ni/AC used as a low-temperature desulfurizer[J]. Ecology and Environmental Sciences, 2018, 27(1): 108-114. [13] 石清爱, 于才渊. 改性活性炭的烟气脱硫脱硝性能研究[J].化学工程, 2010, 38(10): 106-109. SHI Qingai, YU Caiyuan.Study on modified activated carbon for flue gas desulphurization and denitrification[J]. Chemical Engineering (China), 2010, 38(10): 106-109. [14] 黄永捷, 张其武, 刘心中, 等. 载铁颗粒活性炭的制备及其表征[J]. 福建工程学院学报, 2014(3): 253-257. HUANG Yongjie, ZHANG Qiwu, LIU Xinzhong, et al.The preparation and characterization of iron-containing granular activated carbon[J]. Journal of Fujian University of Technology, 2014(3): 253-257. [15] 张蕾, 张磊, 金大瑞, 等. 金属负载型催化剂对烟气脱硫性能的影响[J]. 环境污染与防治, 2013, 35(5): 68-71. ZHANG Lei, ZHANG Lei, JIN Darui, et al.Performance of metal supported catalysts on flue gas desulphurization[J]. Environmental Pollution and Prevention, 2013, 35(5): 68-71. [16] 曹晓强, 黄学敏, 刘胜荣, 等. 微波改性活性炭对甲苯吸附性能的实验研究[J]. 西安建筑科技大学学报: 自然科学版, 2008, 40(2): 249-253. CAO Xiaoqiang, HUANG Xuemin, LIU Shengrong, et al.Activated carbon modified with microwave irradiation for toluene adsorption[J]. Journal of Xi’an University of Architecture & Technology, 2008, 40(2): 249-253. [17] 江罗, 陈标华, 张吉瑞, 等. 2018. 活性炭孔径分布对乙炔氢氯化低固汞催化剂性能的影响[J]. 化工学报, 2018, 69(1): 423-428. JIANG Luo, CHEN Biaohua, ZHANG Jirui, et al.Effect of activated carbon pore size distribution on low-mercury catalyst performance for acetylene hydrochlorination[J]. CIESC Journal, 2018, 69(1): 423-428. [18] 付亚利, 张永发, 李国强, 等.非沥青基煤质氧化活性炭的脱硝特性[J]. 环境工程学报, 2016, 10(7): 3727-3732. FU Yali, ZHANG Yongfa, LI Guoqiang, et al.Denitrification characteristics of non-pitch coal-based oxidized activated carbon[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3727-3732. [19] GADKAREEA K P, JARONIECB M.Pore structure development in activated carbon honeycombs[J]. Carbon, 2000, 38(6): 983-993. [20] 李崇俊, 马伯信, 霍肖旭. 1999. 炭/炭复合材料石墨化度的表征[J]. 新型炭材料, 1999, 14(1): 19-15. LI Chongjun, MA Boxin, HUO Xiaoxu.Characterization of graphitization degree in C/C composites[J]. New Carbon Materlals, 1999, 14(1): 19-15. [21] 杨颖, 李磊, 孙振亚, 等. 活性炭表面官能团的氧化改性及其吸附机理的研究[J]. 科学技术与工程, 2012, 12(24): 6132-6138. YANG Ying, LI Lei, SUN Zhenya, et al.The research on the surface oxidation modification of activated carbon and its adsorption mechanisms of organic matter and heavy metal ions[J]. Science Technology and Engineering, 2012, 12(24): 6132-6138. [22] LI Y, GUO Y, ZHU Tingyu, et al.Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon[J]. Environmental Sciences, 2016(43): 128-135. [23] FANG Ningjie, GUO Jiaxiu, SHU Song, et al.Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce-Mn/NAC[J]. Fuel, 2017(202): 328-337. |
|
|
|