|
|
Heat treatment process of rigid particle reinforced iron-based powder metallurgy valve seat for new energy vehicle |
XIAO Zisheng1, LUO Cheng1, HUA Jianjie2, ZHANG Minghui2, ZHANG Zhi1 |
1. School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; 2. Research and develop planning department, Dongfeng Powder Metallurgy Company, Dongfeng Motor Parts and Components Group Co. Ltd., Shiyan 442002, China |
|
|
Abstract The valve seat frame body was pressed using W6Mo5Cr4V2 as based powder and adding Fe-Mo, Co-Cr-Mo and other hard particles. The particle reinforced iron-based powder metallurgy valve seat was prepared by vacuum high temperature infiltration method using special copper powder (Cu-Fe-Mn) as infiltration agent, with quenching and tempering heat treatment. The effects of quenching temperature and tempering temperature on the micro hardness of valve seat matrix and particles and the friction and wear properties of the valve seat materials were studied. The orthogonal treatment was used to optimize the heat treatment process. The results show that the quenching temperature has a great influence on the hardness and wear resistance of the valve seat material matrix W6Mo5Cr4V2, Fe-Mo and Co-Cr-Mo hard particles. When quenching at 1 140-1 260 ℃, Fe-Mo and Co-Cr-Mo hard particles diffuse obviously. The effect of quenching on carbides in copper-covered areas is small. There are more undissolved and larger size carbides in the covering area. When the quenching temperature is 1 220 ℃, the microhardness (HV) of the matrix material, Fe-Mo and Co-Cr-Mo hard particles are 528, 892 and 632 respectively. Tempering temperature has little effect on hardness of the valve seat. The highest hardness can be obtained when the tempering temperature is 520 ℃. The seat with hardness (HRC) of 49.2 and wear quantity of 0.029 5 g are obtained at quenching temperature of 1 220 ℃, tempering temperature of 520 ℃ and tempering number of 3.
|
Received: 05 June 2017
Published: 11 July 2019
|
|
|
|
|
[1] GONG H, WANG M Q, WANG H.New energy vehicles in China: policies, demonstration, and progress[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(2): 207-228. [2] YUAN X, LIU X, ZUO J.The development of new energy vehicles for a sustainable future: A review[J]. Renewable & Sustainable Energy Reviews, 2015, 42(C): 298-305. [3] LI Y, GEORGHIOU L, RIGBY J.Public procurement for innovation elements in the Chinese new energy vehicles program[M]. Public Procurement for Innovation. 2015: 179-208. [4] 熊安胜. 浅谈未来新能源汽车的技术发展趋势[J]. 信息记录材料, 2016, 17(2): 12-14. XIONG Ansheng.Talking about the development trend of new energy vehicles in the future[J]. Information Recording Materials, 2016, 17(2): 12-14. [5] 罗成, 赵红利, 王健, 等. 硬质颗粒含量对CNG阀座性能的影响[J]. 湖北汽车工业学院学报, 2006, 20(3): 28-31. LUO Cheng, ZHANG Hongli, WANG Jian, et al.Effect of content of hard particle on properties of CNG valve seat[J]. Journal of Hubei University of Automotive Technology, 2006, 20(3): 28-31. [6] 王健, 张宏飞. CNG发动机阀座材料开发及其与气门匹配性试验[J]. 汽车科技, 2004(5): 23-27, 1-2. WANG Jian, ZHANG Hongfei. Development of valve seat for CNG engines and the valve test for matching[J]. Auto Sci-tech, 2004(5): 23-27, 1-2. [7] KAWATA H, MAKI K.Development of high performance valve seat insert materials for gas engines[J]. Powder Metallurgy Technology, 2011, 29(1): 64-65. [8] 彭雪飞, 王云鹏, 隗海林, 等. 压缩天然气单燃料发动机气门座圈材料的性能分析[J]. 上海交通大学学报, 2008, 42(8): 1392-1395. PENG Xuefei, WANG Yunpeng, KUI Hailing, et al.Performance analysis of compressed natural gas single-fule engine valve seat materials[J]. Journal of Shanghai Jiaotong University, 2008, 42(8): 1392-1395. [9] SHRIVAS J, KHAIRNAR G, PANDE S, et al.压缩天然气发动机用气门和气门座圈的开发[J]. 国外内燃机, 2016, 48(6): 40-44. SHRIVAS J, KHAIRNAR G, PANDE S, et al.Development of valve and valve seat for compressed natural gas engine[J]. Foreign Internal Combustion Engine, 2016, 48(6): 40-44. [10] 李小强, 陈火金, 李子阳, 等. WC增强Fe-2Cu-2Ni-1Mo-1C粉末冶金钢的制备及其耐磨性能研究[J]. 机械工程学报, 2013, 49(18): 61-66. LI Xiaoqiang, CHEN Huojin, LI Ziyang, et al.Study on manufacturing and wear resistance of WC reinforced Fe-2Cu-2Ni-1Mo-1C powder metallurgy steel[J]. Journal of Mechanical Engineering, 2013, 49(18): 61-66. [11] 章林, 刘芳, 李志友, 等. 颗粒增强型铁基粉末冶金材料的研究现状[J]. 粉末冶金工业, 2005, 15(1): 33-38. ZHANG Lin, LIU Fang, LI Zhiyou, et al.Development of particulate reinforced steel matrix composite[J]. Materials Science and Engineering of Powder Metallurgy, 2005, 15(1): 33-38. [12] 刘芳, 周科朝, 周涛, 等. Co-Cr-Mo-Si颗粒强化铁基材料的研制[J]. 粉末冶金工业, 2004, 14(4): 1-5. LIU Fang, ZHOU Kechao, ZHOU Tao, et al.Prepartion of iron based material reinforced by Co-Cr-Mo-Si particles[J]. Powder Metallurgy Industry, 2004, 14(4): 1-5 [13] 肖紫圣, 张明辉, 罗成, 等. 洁净燃料发动机粉末冶金阀座研究进展[J]. 装备维修技术, 2016(4): 28-32. XIAO Zisheng, ZHANG Minghui, LUO Cheng, et al.Study progress of powder metallurgy seat for clean fuel engine[J]. Equipment Technology, 2016(4): 28-32. [14] HANATA K, SAKAL M, SHIGEEDA T.Development of high-performance valve seat material for diesel engine[J]. Powder Metallurgy Technology, 2011, 29(1): 64-65. [15] 李烨飞, 高义民, 史芳杰, 等. 硬质合金颗粒增强铁基复合材料的三体磨料磨损性能[J]. 西安交通大学学报, 2009, 43(5): 56-60. LI Yefei, GAO Yimin, SHI Fangjie, et al.Three-body abrasive wear behavior of iron matrix composite reinforced wih cemented carbide particles[J]. Journal of Xi’an Jiaotong University, 2009, 43(5): 56-60. [16] 饶晓晓, 朱小清, 张红霞, 等. 超硬高速钢M2Si的热处理工艺[J]. 金属热处理, 2011, 36(7): 58-60. RAO Xiaoxiao, ZHU Xiaoqing, ZHANG Hongxia, et al.Heat treatment technology of M2Si superhard high speed steel[J]. Heat Treatment of Metals, 2011, 36(7): 58-60. [17] 刘东亮, 邓建国著. 材料科学基础[M]. 上海: 华东理工大学出版社, 2016: 153-154. LIU Dongliang, DENG Jianguo.Materials Science[M]. Shanghai: East China University of Technology Press, 2016: 153-154. [18] 罗成, 董仕节, 熊翔. 电火花沉积工艺对点焊电极TiC沉积层硬度的影响[J]. 材料导报, 2007, 21(12): 137-140. LUO Cheng, DONG Shijie, XIONG Xiang.Influence of electrospark deposition processes on hardness of tic coating on surface of spot-welding electrode[J]. Materials Review, 2007, 21(12): 137-140. [19] PAGOUNIS E, LINDROOS V K.The role of internal stresses on the phase transformation of iron alloys[J]. Scripta Materialia, 1997, 37(1): 65-69. [20] 张国赏, 刘国宇, 邢建东, 等. WC_p/Mn13表面复合材料的制备及其冲击磨损性能[J]. 西安交通大学学报, 2005, 39(7): 757-761. ZHANG Guoshang, LIU Guoyu, XIN Jiandong, et al.Fabrication and impact wear resistance of WC_p/Mn13 surface composites[J]. Journal of Xi’an Jiaotong University, 2005, 39(7): 757-761. [21] 祁小群, 李秀兵, 高义民. WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制[J]. 铸造技术, 2002, 23(5): 282-284. QI Xiaoqun, LI Xiubing, GAO Yiming.The development of WC particle reinforced high chromium cast iron matrix surface-layer composites lining Plates of eject orifice[J]. Foundry Technology, 2002, 23(5): 282-284. [22] 黄慧玲. 含钴高性能高速钢回火组织和性能演变研究[D]. 南京: 东南大学, 2015. HUANG Huiling.Study on the tempering microstructure and performance of high speed steel containing cobalt[D]. Nanjing: Southeast University, 2015. [23] 张西鹏, 吴春京, 寇国军. 热处理工艺对高速钢硬度的影响[J]. 热加工工艺, 2007, 36(2): 61-63. ZHANG Xipeng, WU Chunjing, KOU Guojun.Effect of heat treatment process on hardness of high speed steel[J]. Hot Working Technology, 2007, 36(2): 61-63. |
|
|
|