|
|
Effect of calcining process of APT on growth mechanisms of WO2.72 crystals |
LONG Benfu1, LIN Gaoan1, ZHANG Taiquan2, SHEN Siqi1 |
1. Xiamen Golden Egret Special Alloy Co., Ltd., Xiamen 361021, China; 2. China National R&D Center for Tungsten Technology, Xiamen Tungsten Co., Ltd.,Technology Center, Xiamen 361009, China |
|
|
Abstract WO2.72 powder was prepared by calcining APT powder at various temperatures and holding time in an industrial rotary furnace. The results indicate that the single-phase WO2.72 powder can be obtained above 800 ℃. The morphology and size of WO2.72 grains are strongly affected by calcining temperature, and the morphology changes from long-needle-like to short coarse rod-like at about 770-800 ℃ with increasing temperature. For long needle-like grains, with increasing temperature, their diameters increase slightly, but their lengths increase sharply. The growth mechanism is that monocrystalline grains nucleate grow into APT particles, accompanying by a small amount of WOx·nH2O vapor deposition-re-reduction on the surface of APT particles. For short coarse rod-like grains, with increasing temperature, an opposite result is obtained. The growth mechanism is that the multiple grains clustery nucleate and grow into APT particles to form rod-like grains. With increasing holding time, there is no obvious change in the morphology of WO2.72 grains, and their diameter and length increase slightly.
|
Received: 16 November 2020
Published: 22 March 2021
|
|
|
|
|
[1] 宋翰林, 姜平国, 刘文杰, 等. 氧化钨氢还原动力学的研究进展[J]. 有色金属科学与工程, 2017, 8(5): 64-69. SONG Hanlin, JIANG Pingguo, LIU Wenjie, et al.Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. [2] ŞENOL Ç.Reduction behavior of nanocrystalline WO3 powder in H2 atmosphere[J]. Afyon Kocatepe University Journal of Science and Engineering, 2017, 17: 669-674. [3] WU X W, LUO J S, LU B Z, et al.Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s785-s789. [4] 陈丽杰, 田磊, 徐志峰, 等. 不同氧含量的氧化钨粉对超细钨粉制备的影响[J]. 有色金属, 2018, 6: 61-66. CHEN Lijie, TIAN Lei, XU Zhifeng, et al.Effect of tungsten oxide with different oxygen content on preparation of ultrafine tungsten powder[J]. Nonferrous Metals, 2018, 6: 61-66. [5] WU C H.Ultrafine tungsten powders in-situ reduction nano- needle violet tungsten oxide[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6): 686-691. [6] WU C H, WU Q S, WEN X, et al. Preparation method of industrial purple nano-needle tungsten oxide: US, US2014/ 0014875[P].2014-01-16. [7] 谢中华, 汪壮瀚, 余春荣, 等. 一种高纯均相针状紫钨粉末的制备方法: 中国, CN109622989A[P].2019-04-16. XIE Zhonghua, WANG Zhuanghan, YU Chunrong, et al. Preparation method of high purity homogeneous acicular violet tungsten powder: China, CN109622989[P].2019-04-16. [8] PFEIFER J, BADALJAN E, TEKULA-BUXBAUM P, et al.Growth and morphology of W18O49 crystals produced by microwave decomposition of ammonium paratungstate[J]. Journal of Crystal Growth, 1996, 169(4): 727-733. [9] 黄继武, 李周. 多晶材料X射线衍射—实验原理, 方法与应用[M]. 北京: 冶金工业出版社, 2012. HUANG Jiwu, LI Zhou.Polycrystalline Materials X-ray Diffraction Experimental Principle, Method and Application[M]. Beijing: Metallurgical Industry Press, 2012. [10] 刘梅丽. 蓝色氧化钨中氨含量的测定[J]. 中国钨业, 1995, 6: 28-29. LIU Meili.Determination of NH3 content in blue tungsten oxide[J]. China Tungsten Industry, 1995, 6: 28-29. [11] 苏玉蕾, 王少波, 宋刚祥, 等. 氨分解制氢催化剂研究进展[J]. 舰船科学技术, 2010, 32(4): 138-143. SU Yulei, WANG Shaobo, SONG Gangxiang, et al.Development in catalysts for hydrogen production by ammonia decomposition[J]. Ship Science and Technology, 2010, 32(4): 138-143. [12] HASHIMOTO H, TANAKA K, YODA E.Growth and evaporation of tungsten oxide crystals[J]. Journal of Physical Society of Japan, 1960, 15(6): 1006-1014. [13] KUMAO A, FUJITA Y, ENDOH H.Growth of dendritic and needle tungsten oxide crystals studied by high-resolution electron microscopy[J]. Ultramicroscopy, 1994, 54(2/4): 201-206. [14] 石玉斌. W18O49微纳米晶须/线的制备及其生长机理研究[D]. 长沙: 中南大学, 2012: 33-43. SHI Yubin.Preparation and growth mechanism of W18O49 micro/nanosized whiskers/wires[D]. Changsha: Central South University, 2012: 33-43. [15] 党丁盈, 刘新利, 伍镭, 等. W/WO2.72一维纳米异质结构的合成及生长机理[J]. 粉末冶金材料科学与工程, 2013, 18(5): 627-630. DANG Dingying, LIU Xinli, WU Lei, et al.Synthesis and growth mechanism of one-dimensional nano W/WO2.72 heterostructures[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(5): 627-630. [16] SRIVASTAV A K, BASU J, KASHYAP S, et al.Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces[J]. Scripta Materialia, 2016, 115: 28-32. [17] HARBNER R, SCHUBERT W D, LASSNER E, et al.Mechanism of technical reduction of tungsten, Part 2: Hydrogen reduction of tungsten blue oxide to tungsten powder[J]. High- Frequency Ultrasound, 1983, 2(4): 156-163. [18] 刘新利, 张泉, 王世良, 等. W18O49亚微米棒阵列的制备及其生长机理[J]. 中国有色金属学报, 2011, 21(5): 1093-1098. LIU Xinli, ZHANG Quan, WANG Shiliang, et al.Synthesis and growth mechanism of W18O49 submicron-rod arrays[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 1093-1098. |
|
|
|