|
|
Molecular dynamics simulation of void evolution and its mechanical response in single-crystal tungsten under extreme strain rate |
BAI Xiaodan, CHEN Xun, MA Yunzhu, LIU Wensheng, LIANG Chaoping |
National Key Laboratory of Science and Technology for National Defense on High-Strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract Molecular dynamics simulation was used to investigate the void evolution in single-crystal tungsten under uniaxial compression at extreme high strain rate (108-1011 s-1), and the mechanical properties were also tested. The results show that the yield strength and Young’s modulus decrease as a function of void radius. The plastic behavior of tungsten with different radius of void shows similar feature with the increase of strain rate. At $\dot{\varepsilon }$≥5×1010 s-1, the single crystal tungsten is changed into an amorphous structure. The amorphization of tungsten with void is delayed in comparison to perfect tungsten crystal ($\dot{\varepsilon }$≥1010 s-1). At$\dot{\varepsilon }$≤1010 s-1, before amorphization, the evolution of void during deformation the synergic effect of dislocation generation and twinning. The detailed plastic behavior follows: 1) The emission of 1/2[111] dislocation loop. 2) The decomposition of 1/2[111] screw dislocation. 3) The formation of (112)$[\bar{1}\bar{1}1]$twins, 4) the collapse of void.
|
Received: 01 June 2020
Published: 18 September 2020
|
|
|
|
|
[1] 王星, 李树奎, 王迎春, 等. 不同加载应变率下钨合金变形及破坏机理研究[J]. 北京理工大学学报, 2010, 30(11): 112-116. WANG Xing, LI Shukui, WANG Yingchun, et al.Study on deformation and failure mechanism of tungsten alloy under different loading strain rates[J]. Journal of Beijing Institute of Technology, 2010, 30(11): 112-116. [2] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 243-272. CAI Guobiao, XU Dajun.Hypersonic Vehicle Technology[M]. Beijing: Science Press, 2012: 243-272. [3] 郭文启, 刘金旭, 吕翠翠, 等. 90W-7Ni-3Fe合金拉伸力学行为的应变率效应[J]. 稀有金属材料与工程, 2013, 42(4): 793-796. GUO Wenqi, LIU Jinxu, LÜ Cuicui, et al.Strain rate effect of tensile mechanical behavior of 90W-7Ni-3Fe alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 793-796. [4] MA Y, ZHANG J, LIU W, et al.Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating[J]. International Journal of Refractory Metals & Hard Materials, 2014, 42: 71-76. [5] 刘海燕, 宋卫东, 宁建国. 不同晶粒度钨合金动态力学性能研究[J]. 材料工程, 2007(6): 4-7. LIU Haiyan, SONG Weidong, NING Jianguo.Research on dynamic mechanical properties of tungsten alloys with different grain sizes[J]. Materials Engineering, 2007(6): 4-7. [6] REMINGTON T P, REMINGTON B A, HAHN E N, et al.Deformation and failure in extreme regimes by high-energy pulsed lasers: A review[J]. Materials Science & Engineering A, 2017, 688(Complete): 429-458. [7] BOURNE N K.Atomistic views of deformation[J]. Nature, 2017, 550(7677): 461-463. [8] MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al.Femtosecond visualization of lattice dynamics in shock- compressed matter[J]. Science, 2013, 342(6155): 220-223. [9] ZEPEDA-RUIZ L A, STUKOWSKI A, OPPELSTRUP T, et al. Probing the limits of metal plasticity with molecular dynamics simulations[J]. Nature, 2017, 550(7677): 492-495. [10] WEHRENBERG C E, MCGONEGLE D, BOLME C, et al.In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 2017, 550(7677): 496-499. [11] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [12] ZHOU X, JOHNSON R, WADLEY H.Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004,69(14): 144113. [13] REN Q Q, FAN J L, GONG H R.Work function and cohesion properties of W-Fe interfaces[J]. Materials Letters, 2015, 145: 205-208. [14] MI S T, GONG H R, FAN J L.Structural stability and mechanical property of Fe-W solid solutions from a constructed Fe-W potential[J]. Journal of Applied Physics, 2019,126(11): 115102. [15] WEI W, CHEN L, GONG H, et al.Strain-stress relationship and dislocation evolution of W-Cu bilayers from a constructed n-body W-Cu potential[J]. Journal of Physics Condensed Matter, 2019, 31(30): 305002. [16] STUKOWSKI A, ALBE K.Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modelling & Simulation in Materials Science & Engineering, 2010, 18(8): 2131-2145. [17] JR W D C. Materials Science and Engineering: An Introduction[M]. United States of America: John Wiley & Sons, 1994: 150-196. [18] DUPONT V, GERMANN T C.Strain rate and orientation dependencies of the strength of single crystalline copper under compression[J]. Physical Review B Condensed Matter, 2012, 86(13): 71-75. [19] TANG Y, BRINGA E M, REMINGTON B A, et al.Growth and collapse of nanovoids in tantalum monocrystals[J]. Acta Materialia, 2011, 59(4): 1354-1372. [20] TANG Y, BRINGA E M, MEYERS M A.Ductile tensile failure in metals through initiation and growth of nanosized voids[J]. Acta Materialia, 2012, 60(12): 4856-4865. [21] REMINGTON T P, RUESTES C J, BRINGA E M, et al.Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation[J]. Acta Materialia, 2014, 78: 378-393. [22] BRINGA E M, TRAIVIRATANA S, MEYERS M A.Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects[J]. Acta Materialia, 2010, 58(13): 4458-4477. [23] DUPONT V, GERMANN T C.Strain rate and orientation dependencies of the strength of single crystalline copper under compression[J]. Physical Review B, 2012, 86(13): 134111. |
|
|
|