|
|
Microstructure and properties of FeCr and CoCr laser cladding coatings |
LIU Wei1,3, FU Li1,3, CHEN Xiaoming1,2, ZHANG Lei1,3, LI Yuluo2, ZHANG Kai1,3 |
1. Key Laboratory of Surface Engineering of Equipments for Hydraulic Engineering of Zhejiang Province, Standard and Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012, China; 2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China; 3. Hydraulic Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province,Hangzhou Machinery Design and Research Institute, Ministry of water resources, Hangzhou 310012, China |
|
|
Abstract FeCr and CoCr cladding coatings were prepared by laser cladding technology on 40Cr steel substrate for hoist piston rod. The microstructure, microhardness, porosity and wear resistance of cobalt based and iron-based alloys were characterized and analyzed. The results show that the porosity of FeCr and CoCr alloy cladding coatings obtained by laser cladding technology approaches to zero. The average microhardness of FeCr and CoCr alloy cladding layer are 718.6 HV0.2 and 541.4 HV0.2, respectively. The impact toughness of FeCr alloy cladding layer is better than that of CoCr alloy cladding layer. After 180 min friction and wear test, the mass loss of FeCr alloy cladding layer is 0.002 01 g, the mass loss the CoCr alloy cladding layer is 0.003 47 g, and the mass loss of the matrix 40Cr is 0.081 08 g. The wear resistance of FeCr alloy cladding layer is better than that of CoCr alloy cladding layer and also better than 40Cr stainless steel. The wear mechanism of 40Cr steel, FeCr alloy and CoCr alloy cladding layer is mainly micro ploughing and adhesive wear.
|
Received: 07 January 2020
Published: 11 August 2020
|
|
|
|
|
[1] 赵坚, 陈小明, 吴燕明, 等. 启闭机活塞杆表面超音速火焰喷涂WC-10Co-4Cr涂层的性能[J]. 中国表工程, 2014, 27(3): 71-75. ZHAO Jian, CHEN Xiaoming, WU Yanming, et al.Properties of WC-10Co-4Cr coatings sprayed by HVOF on hoist piston rod surface[J]. China Surface Engineering, 2014, 27(3): 71-75. [2] 伏利, 黄欢欢, 陈小明, 等. 多次激光熔覆工艺对铁基合金涂层组织和性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2): 95-99. FU Li, HUANG Huanhuan, CHEN Xiaoming, et al.Effect of multiple laser cladding processes on microstructure and properties of Fe-based alloy coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 95-99. [3] 张磊, 陈小明, 毛鹏展, 等. 沿海水闸液压活塞杆激光熔覆替代电镀镍铬的研究现状及展望[J]. 材料保护, 2019, 52(5): 121-124. ZHANG Lei, CHEN Xiaoming, MAO Pengzhan, et al.Research status and forecast on laser-cladding coating as candidate to electroplating nickel and chromium for hydraulic piston rod of coastal sluice[J]. Materials Protection, 2019, 52(5): 121-124. [4] 刘月龙, 斯松华. 激光熔覆铁基合金涂层研究进展[J]. 安徽工业大学学报(自然科学版), 2005, 22(4): 348-351. LIU Yuelong, SI Songhua.Progress on laser cladding iron-based alloy[J]. Journal of Anhui University of Technology (Natural Science), 2005, 22(4): 348-351. [5] ZHANG P L, YAN H,YU Z H, et al.Influences of different anneal temperatures and cooling rates on the amorphous and crystalline composite coating[J]. Surface & Coatings Technology, 2012, 206: 4981-4987. [6] KATHURIA Y P.Some aspects of laser surface cladding in the turbine industry[J]. Surface and Coatings Technology, 2000, 132(2/3): 262-269. [7] 尹泉, 彭如恕, 朱红梅. 激光熔覆原位生成增强相强化铁基涂层性能研究[J]. 表面技术, 2016, 45(4): 99-104. YIN Quan, PENG Rushu, ZHU Hongmei.Performance improvement of iron base coating by laser cladding in-situ generated reinforced phase[J]. Surface Technology, 2016, 45(4): 99-104. [8] LI J L, LIU H J, YU C Z, et al.Research and development status of laser cladding on magnesium alloys: A review[J] . Optics and Lasers in Engineering, 2017, 93(6): 195-210. [9] 汤精明, 姜忠宇. 表面完整性对40Cr钢耐腐蚀性的影响[J].热加工工艺, 2010, 39(2): 100-103. TANG Jingming, JIANG Zhongyu.Influence of surface integrality on corrosion resistance of 40Cr steel[J]. Hot Working Technology, 2010, 39(2): 100-103. [10] 张松, 张春华. 2Cr13钢表面激光熔覆Co基合金组织及其性能[J]. 稀有金属材料与工程, 2001, 30(3): 221-224. ZHANG Song, ZHANG Chunhua.Microstructure and performance of a laser clad Co-based alloy[J]. Rare Metal Materials and Engineering, 2001, 30(3): 221-224. [11] CHEN J C, GUO J, ZHOU S.Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate[J]. Transactions of Nonferrous Metals Society of China, 2012(9): 2171-2178. [12] 刘思奇, 郭衍束, 杨玉玲, 等. H13钢表面激光熔覆耐磨涂层正交化工艺研究[J]. 激光技术, 2015, 39(3): 399-404. LIU Siqi, GUO Yanshu, YANG Yuling, et al.Investigation on orthogonal experiments of laser cladding anti-wear resistance coating on H13 steel[J]. Laser Technology, 2015, 39(3): 399-404. [13] 余本海, 胡雩惠, 吴玉娥, 等. 电磁搅拌对激光熔覆WC-Co 基合金涂层的组织结构和硬度的影响及机理研究[J]. 中国激光, 2010, 37(10): 2672-2677. YU Benhai, HU Ehui, WU Yue, et al.Studies of the effects and mechanism of electromagnetic stirring on the microstructures and hardness of laser cladding WC-Co based alloy coating[J]. Chinese Journal of Lasers, 2010, 37(10): 2672-2677. [14] 史泰冈, 高丹. Fe 基激光熔覆工艺参数对涂层成形的影响[J]. 实验室研究与探索, 2013, 32(6): 30-33. SHI Taigang, GAO Dan.Effect of process parameters on forming of Fe based coating by laser cladding[J]. Research and Exploration in Laboratory, 2013, 32(6): 30-33. [15] 怀东, 张大卫. 铁基合金粉末的激光熔覆性能实验研究[J]. 应用激光, 2007, 27(4): 273-277. HUAI Dong, ZHANG Dawei.The capability study of Fe-alloy powder laser cladding[J]. Applied Laser, 2007, 27(4): 273-277. |
|
|
|