|
|
Effect of powder surface modification on the stereolithography of zirconia |
LI Qing1, LIU Yao1, CAI Weijin1, SHI Yuan1, LIU Shaojun1,2 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Shenzhen Research Institute of Central South University, Shenzhen 518057, China |
|
|
Abstract The surface of ZrO2 powder was modified by MAA, 3-(isobutyryloxy) propyltrimethoxysilane (γ-MPS) and stearic acid (SA), and then the stereolithography slurry was prepared. By means of infrared spectrum, particle size analysis, sedimentation experiment and rheological test, the effect and mechanism of modifier on particle size distribution, stability and viscosity of slurry were studied. The results show that the modifier exists on the surface of ZrO2 powder in the form of chemical adsorption, which can effectively reduce the agglomeration of powder. The surface modification of ZrO2 powder can improve the stability and reduce the viscosity of the stereolithography slurry. Adding 0.5%MAA (mass fraction) has the best modification effect. The viscosity of the slurry decreases from 156.2 Pa·s to 47.1 Pa·s at the shear rate of 1 s-1. ZrO2 green bodies are formed via stereolithography with slurry of 75% solid content and sintered at 1 500 ℃ for 3 h. ZrO2 ceramics with density of 6.02 g/cm3 and hardness (HV10) of 1 290 are obtained.
|
Received: 26 November 2019
Published: 19 June 2020
|
|
|
|
|
[1] 曲远方. 现代陶瓷材料及技术[M]. 上海: 华东理工大学出版社, 2008: 460-462. QU Yuanfang.Modern Ceramic Materials and Technology[M]. Shanghai: East China University of Science and Technology Press, 2008: 460-462. [2] AFZAL A.Implantable zirconia bioceramics for bone repair and replacement: A chronological review[J]. Materials Express, 2014, 4(1): 1-12. [3] 王零森. 二氧化锆陶瓷(Ⅰ)[J]. 陶瓷科学与艺术, 1997(1): 40-44. WANG Lingsen.Zirconia ceramics(Ⅰ)[J]. Ceramics Science and Art, 1997(1): 40-44. [4] 王零森. 二氧化锆陶瓷(Ⅱ)[J]. 陶瓷科学与艺术, 1997(2): 43-50. WANG Lingsen.Zirconia ceramics(Ⅱ)[J]. Ceramics Science and Art, 1997(2): 43-50. [5] EBERT J, OZKOL E, ZEICHNER A, et al.Direct inkjet printing of dental prostheses made of zirconia[J]. Journal of Dental Research, 2009, 88(7): 673-676. [6] HE R X, LIU W, WU Z, et al.Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method[J]. Ceramics International, 2018, 44(3): 3412-3416. [7] FERRAGE L, BERTRAND G, LENORMAND P, et al.A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite[J]. Journal of the Australian Ceramic Society, 2017, 53(1): 11-20. [8] GMEINER R, MITTERAMSKOGLER G, STAMPFL, J, et al.Stereolithographic ceramic manufacturing of high strength bioactive glass[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 38-45. [9] ZOCCA A, COLOMBO P, GOMES C M, et al.Additive manufacturing of ceramics: Issues, potentialities, and opportunities[J]. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001. [10] HALLORAN J W.Ceramic stereolithography: Additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46(1): 19-40. [11] HINCZEWSKI C, CORBEL S, CHARTIER T.Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18(6): 583-590. [12] CHARTIER T, CHAPUT C, DOREAU F, et al.Stereolithography of structural complex ceramic parts[J]. Journal of Materials Science, 2002, 37(15): 3141-3147. [13] ABOULIATIM Y, CHARTIER T, ABELARD P, et al.Optical characterization of stereolithography alumina suspensions using the Kubelka-Munk model[J]. Journal of the European Ceramic Society, 2009, 29(5): 919-924. [14] BADEV A, ABOULIATIM Y, CHARTIER T, et al.Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography[J]. Journal of Photochemistry & Photobiology a Chemistry, 2011, 222(1): 117-122. [15] CHARTIER T, BADEV A, ABOULIATIM Y, et al.Stereolithography process: Influence of the rheology of silica suspensions and of the medium on polymerization kinetics- cured depth and width[J]. Journal of the European Ceramic Society, 2012, 32(8): 1625-1634. [16] ZHOU W Z, LI D C, WANG H.A novel aqueous ceramic suspension for ceramic stereolithography[J]. Rapid Prototyping Journal, 2010, 16(1): 29-35. [17] 周伟召, 李涤尘, 周鑫南, 等. 基于光固化的直接陶瓷成形工艺[J]. 塑性工程学报, 2009, 16(3): 198-201. ZHOU Weizhao, LI Dichen, ZHOU Xinnan, et al.Direct fabrication process of ceramics based on stereolithography[J]. Journal of Plasticity Engineering, 2009, 16(3): 198-201. [18] 周伟召, 李涤尘, 陈张伟. 水基陶瓷浆料的光固化特性及成形工艺参数选择[C]// 中国机械工程学会特种加工分会. 第13届全国特种加工学术会议论文集. 哈尔滨: 哈尔滨工业大学出版社, 2009: 499-503. ZHOU Weizhao, LI Dichen, CHEN Zhangwei.Laser curing characterics of aqueous ceramic suspension and selectance for process parameters[C]// Chinese Mechanical Engineering Society. Proceedings of the 13th National Non-Traditional Machining Academic Conference. Harbin: Harbin Institute of Technology Press, 2009: 499-503. [19] GRIFFITH M L, HALLORAN J W.Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2005, 79(10): 2601-2608. [20] CHU T M G, HALLORAN J W. High-temperature flow behavior of ceramic suspensions[J]. Journal of the American Ceramic Society, 2000, 83(9): 2189-2195. [21] HAZAN Y D, HEINECKE J, WEBER A, et al.High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants[J]. Journal of Colloid & Interface Science, 2009, 337(1): 66-74. [22] WU R Y, WEI W C J. De-agglomeration kinetics of feedstocks with granule tetragonal zirconia polycrystalline powder[J]. Journal of the American Ceramic Society, 2005, 88(7): 1734-1739. [23] LIU D M.Effect of Dispersants on the rheological behavior of zirconia-wax suspensions[J]. Journal of the American Ceramic Society, 1999, 82(5): 1162-1168. [24] SUN J X, BINNER J, BAI J M.Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39(4): 1660-1667. [25] ABBOUD M, TURNER M, DUGUET E, et al.PMMA-based composite materials with reactive ceramic fillers. Part 1.-Chemical modification and characterization of ceramic particles[J]. Journal of Materials Chemistry, 1997, 7(8): 1527-1532. [26] 颜鲁婷. 超微细陶瓷粉体的表面改性及其与有机载体相容性的研究[D]. 北京: 清华大学, 2003: 18-19. YAN Luting.Studies on the surface modification of ultrafine ceramic powders and their compatibility with organic binders[D]. Beijing: Tsinghua University, 2003: 18-19. [27] 郑水林, 王彩丽. 粉体表面改性[M]. 北京: 中国建材工业出版社, 2011: 298-299. ZHENG Shuilin, WANG Caili.Surface Modification of Powder [M]. Beijing: China Building Materials Press, 2011: 298-299. [28] 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性[M]. 北京:化学工业出版社, 2003: 189-191. GAO Lian, SUN Jing, LIU Yangqiao.Dispersion and Surface Modification of Nano-Powder[M]. Beijing: Chemical Industry Press, 2003: 189-191. [29] LICCIULLI A, CORCIONE C E, GRECO A, et al.Laser stereolithography of ZrO2 toughened Al2O3[J]. Journal of the European Ceramic Society, 2005, 25(9): 1581-1589. [30] ZHOU W Z, LI D C, CHEN Z W.The influence of ingredients of silica suspensions and laser exposure on UV curing behavior of aqueous ceramic suspensions in stereolithography[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(5/8): 575-582. [31] GRIFFITH M L, HALLORAN J W.Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. |
|
|
|