|
|
Metal hydride thermal energy storage and its research progress |
ZHOU Chengshang1, LIU Huang1, LIU Yong1, SHI Quan2,3 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Thermochemistry Laboratory, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China; 3. Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian 116023, China |
|
|
Abstract In the past decades, metal hydrides have attracted extensive attention as high-energy-density thermal storage materials. This paper introduces the thermochemical properties of metal hydrides and the working principle of the metal hydride-based thermal storage systems. Based on recent research progresses and developments, the working temperature, pressure and heat storage density of metal hydride as heat storage materials at high, medium and low temperature were analyzed and discussed. The application and development trend of refrigeration and heat pump for metal hydride thermal energy storage were also discussed.
|
Received: 21 December 2018
Published: 14 November 2019
|
|
|
|
|
[1] 朱敏. 先进储氢材料导论[M]. 北京: 科学出版社, 2015: 1-24.<br />
ZHU Min.Introduction to Advanced Hydrogen Storage Materials[M]. Beijing: Science Press, 2015: 1-24.<br />
[2] REILLY J J, WISWALL R H.Formation and properties of iron titanium hydride[J]. Inorganic Chemistry, 1974. 13(1): 218-222.<br />
[3] VAN MAL H H, BUSCHOW K H J, MIEDEMA A R. Hydrogen absorption in LaNi<sub>5</sub> and related compounds: Experimental observations and their explanation[J]. Journal of the Less Common Metals, 1974. 35(1): 65-76.<br />
[4] REILLY J J, WISWALL R H.Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg<sub>2</sub>NiH<sub>4</sub>[J]. Inorganic Chemistry, 1968, 7(11): 2254-2256.<br />
[5] 朱兴华, 王荣明. 储氢材料的储热功能[J]. 机械工程材料, 1999(6): 48-50.<br />
ZHU Xinghua, WANG Rongming.Heat storage function of hydrogen storage materials[J]. Mechanical Engineering Materials, 1999(6): 48-50.<br />
[6] BOGDANOVIC B, RITTER A, SPLIETHOFF B.Active MgH<sub>2</sub>-Mg systems for reversible chemical energy storage[J]. Angewandte Chemie International Edition in English, 1990. 29(3): 223-234.<br />
[7] QU XuanHui, LI Yang, LI Ping, et al, The development of metal hydrides using as concentrating solar thermal storage materials[J]. Frontiers of Materials Science, 2015, 9(4): 317-331.<br />
[8] MICHAEL F, BORISLAV B.High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences, 2009, 10(1): 325-344.<br />
[9] SHARMA S D, KAZUNOBU Sagara.Latent heat storage materials and systems: A review[J]. International Journal of Green Energy, 2005, 2(1): 1-56.<br />
[10] CHAISE A, RANGO P D, MARTY P, et al.Experimental and numerical study of a magnesium hydride tank[J]. International Journal of Hydrogen Energy, 2010, 35(12): 6311-6322.<br />
[11] GOLBEN P M, DACOSTA D, SANDROCK G. Hydride-based cold-start heater for automotive catalyst[J]. Journal of Alloys and Compounds, 1997, 253-254: 686-688.<br />
[12] CORGNALE C, HARDY B, MOTYKA T, et al.Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821-833.<br />
[13] 万琦, 蒋利军, 李志念, 等. 太阳能集热发电用Mg基储热材料的研究现状[J]. 新材料产业, 2016(5): 58-62.<br />
WAN Qi, JIANG Lijun, LI Zhinian, et al.Research status of Mg-based heat storage materials for solar collector power generation[J]. New Material Industry, 2016(5): 58-62.<br />
[14] 王新华, 陈长聘. 金属氢化物热泵的研究进展[J]. 材料导报, 1994(5): 16-19.<br />
WANG Xinhua, CHEN Changping.Research progress of metal hydride heat pump[J]. Material Report, 1994(5): 16-19.<br />
[15] SCHLAPBACH L, ZUTTEL A.Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358.<br />
[16] YARTYS V A, LOTOTSKYY M, LINKOV V, et al.Metal hydride hydrogen compression: recent advances and future prospects[J]. Applied Physics A, 2016, 122(4): 415.<br />
[17] SUN Y, SHEN C, LAI Q, et al.Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art[J]. Energy Storage Materials, 2018, 10: 168-198.<br />
[18] PANG Y, LI Q.A review on kinetic models and corresponding analysis methods for hydrogen storage materials[J]. international journal of hydrogen energy, 2016, 41(40): 18072-18087.<br />
[19] KITAGAWA Y, TANABE K.Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step[J]. Chemical Physics Letters, 2018, 699: 132-138.<br />
[20] PAN Y B, WU Y F, LI Q.Modeling and analyzing the hydriding kinetics of Mg-LaNi<sub>5</sub> composites by Chou model[J]. International Journal of Hydrogen Energy, 2011, 36(20): 12892-12901.<br />
[21] LU J, CHOI Y J, FANG Z Z, et al.Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH<sub>2</sub>[J]. Journal of the American Chemical Society, 2010, 132(19): 6616-6617.<br />
[22] AVRAMI M.Kinetics of phase change. I General theory[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112.<br />
[23] AVRAMI M.Kinetics of phase change. II transformation-time relations for random distribution of nuclei[J]. the Journal of Chemical Physics, 1940, 8(2): 212-224.<br />
[24] GOODELL P D, RUDMAN P S.Hydriding and dehydriding rates of the LaNi<sub>5</sub>-H system[J]. Journal of The Less Common Metals, 1983, 89(1): 117-125.<br />
[25] LI J, FAN P, FANG Z Z, et al.Kinetics of isothermal hydrogenation of magnesium with TiH<sub>2</sub> additive[J]. International Journal of Hydrogen Energy, 2014, 39(14): 7373-7381.<br />
[26] GRAETZ J.New approaches to hydrogen storage[J]. Chemical Society Reviews, 2009, 38(1): 73-82.<br />
[27] HARDY B J, ANTON D L.Hierarchical methodology for modeling hydrogen storage systems. Part II: Detailed models[J]. International Journal of Hydrogen Energy, 2009, 34(7): 2992-3004.<br />
[28] MUTHUKUMAR P, GROLL M.Metal hydride based heating and cooling systems: A review[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3817-3831.<br />
[29] CALDWELL R T, MCDONALD J W, PIETSCH A.Solar-energy receiver with lithium-hydride heat storage[J]. Solar Energy, 1965, 9(1): 48-60.<br />
[30] FRIEDLMEIER G, WIERSE M, GROLL M.Titanium hydride for high-temperature thermal energy storage in solar-thermal power stations[J]. Zeitschrift Für Physikalische Chemie, 1994, 183(1/2): 175-183.<br />
[31] RONNEBRO E, WHYATT G, POWELL M, et al.Metal hydrides for high-temperature power generation[J]. Energies, 2015, 8(8): 8406-8430.<br />
[32] HARRIES D N, PASKEVICIUS M, SHEPPARD D A, et al.Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2011, 100(2): 539-549.<br />
[33] LI Y, LI P, QU X.Investigation on LiBH<sub>4</sub>-CaH<sub>2</sub> composite and its potential for thermal energy storage[J]. Scientific reports, 2017, 7: 41754.<br />
[34] REISER A, BOGDANOVIC B, SCHLICHTE K.The application of Mg-based metal-hydrides as heat energy storage systems[J]. International Journal of Hydrogen Energy, 2000, 25(5): 425-430.<br />
[35] BOGDANOVIC B, REISER A, SCHLICHTE K, et al.Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2): 77-89.<br />
[36] CORGNALE C, HARDY B, TAMBURELLO D A, et al.Acceptability envelope for metal hydride-based hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2812-2824.<br />
[37] SHEPPARD D A, PASKEVICIUS M, BUCKLEY C E.Thermodynamics of hydrogen desorption from NaMgH<sub>3</sub> and its application as a solar heat storage medium[J]. Chemistry of Materials, 2011, 23(19): 4298-4300.<br />
[38] SHEPPARD D A, CORGNALE C, HARDY B, et al.Hydriding characteristics of NaMgH<sub>2</sub>F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage[J]. RSC Advances, 2014, 4(51): 26552-26562.<br />
[39] FANG Z Z, ZHOU C, FAN P, et al.Metal hydrides based high energy density thermal battery[J]. Journal of Alloys and Compounds, 2015, 645: S184-S189.<br />
[40] ZHOU C, FANG Z Z, LU J, et al.Thermodynamic and kinetic destabilization of magnesium hydride using Mg-In solid solution alloys[J]. Journal of the American Chemical Society, 2013, 135(30): 10982-10985.<br />
[41] ZHOU C, FANG Z Z, REN C, et al.Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride[J]. The Journal of Physical Chemistry C, 2013, 117(25): 12973-12980.<br />
[42] FENG P, WU Z, ZHANG Y, et al.Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair[J]. Applied Energy, 2018, 217: 25-36.<br />
[43] ZHANG J, YAN S, QU H.Recent progress in magnesium hydride modified through catalysis and nanoconfinement[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1545-1565.<br />
[44] WAN Y, WANG Y.Recent advances in additive-enhanced magnesium hydride for hydrogen storage[J]. Progress in Natural Science: Materials International, 2017, 27(1): 41-49.<br />
[45] ZHOU C, FANG Z Z, SUN P.An experimental survey of additives for improving dehydrogenation properties of magnesium hydride[J]. Journal of Power Sources, 2015, 278: 38-42.<br />
[46] WAN Q, JIANG L J, LI Z N, et al.Thermal storage properties of Mg-LaNi using as a solar heat storage material[J]. Rare Metals, 2017: 1-8.<br />
[47] LI Y, LI P, TAN Q, et al.Thermal properties and cycling performance of Ca(BH<sub>4</sub>)<sub>2</sub>/MgH<sub>2</sub> composite for energy storage[J]. Chemical Physics Letters, 2018, 700: 44-49.<br />
[48] AMIRKHIZ B S, DANAIE M, Barnes M, et al.Hydrogen sorption cycling kinetic stability and microstructure of single-walled carbon nanotube (SWCNT) magnesium hydride (MgH<sub>2</sub>) nanocomposites[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3265-3275.<br />
[49] XIA G, TAN Y, CHEN X, et al.Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39): 5981-5988.<br />
[50] URBANCZYK R, PEINECKE K, PEIL S, et al.Development of a heat storage demonstration unit on the basis of Mg<sub>2</sub>FeH<sub>6</sub> as heat storage material and molten salt as heat transfer media[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13818-13826.<br />
[51] SHEPPARD D A, PASKEVICIUS M, BUCKLEY C E.Thermodynamics of hydrogen desorption from NaMgH<sub>3</sub> and its application as a solar heat storage medium[J]. Chemistry of Materials, 2011, 23(19): 4298-4300.<br />
[52] LI Y, LI P, WAN Q, et al.A study of metal hydride as novel thermal energy storage material by using rapid solidification[J]. Journal of Alloys and Compounds, 2016, 689: 641-647.<br />
[53] LOTOTSKYY M V, YARTYS V A, POLLET B G, et al.Metal hydride hydrogen compressors: A review[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5818-5851.<br />
[54] BHUIYA M M H, KUMAR A, KIM K J. Metal hydrides in engineering systems, processes, and devices: A review of non-storage applications[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2231-2247.<br />
[55] MAGNETTO D, MOLA S, DACOSTA D H, et al.A metal hydride mobile air conditioning system[R]. SAE Technical Paper, 2006.<br />
[56] MUTHUKUMAR P, GROLL M.Metal hydride based heating and cooling systems: A review[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3817-3831.<br />
[57] 詹锋, 鲍德佑, 秦光荣, 等. 应用金属氢化物的氢液化装置[J]. 低温与特气, 1993(1): 34-36.<br />
ZHAN Feng, BAO Deyou, QIN Guangrong, et al.Hydrogen liquefaction unit using metal hydride[J]. Low Temperature and Special Gas, 1993(1): 34-36<br />
[58] 王新华, 李寿权, 陈立新, 等. 汽车氢化物空调器用Ti-Mn系多元贮氢合金及复合氢化物床空调器性能[J]. 稀有金属材料与工程, 2001, 30(5): 353-356.<br />
WANG Xinhua, LI Shouquan, CHEN Lixin, et al.Performance of Ti-Mn multicomponent hydrogen storage alloys and composite hydride bed air conditioners for automotive hydride air conditioners[J]. Rare Metal Materials and Engineering, 2001, 30(5): 353-356.<br />
[59] 覃峰, 陈江平, 倪久健, 等. 功能验证型尾气驱动金属氢化物车用制冷/空调系统的设计和性能[J]. 机械工程学报, 2006, 42(7):176-180.<br />
QIN Feng, CHEN Jiangping, NI Jiujiang, et al.Design and performance of automotive refrigeration/air conditioning system with metal hydride driven by exhaust gas[J]. Journal of Mechanical Engineering, 2006, 42(7): 176-180.<br />
[60] 余敏贤, 林贵平. 金属氢化物冷源传热传质分析[J]. 宇航学报, 2002, 23(2): 11-14.<br />
YU Minxian, LIN Guiping.Heat and mass transfer analysis of metal hydride cold source[J]. Journal of Astronautics, 2002, 23(2): 11-14.<br />
[61] 林贵平, 余敏贤. 金属氢化物热泵及其在载人航天生保系统中的应用[J]. 空间科学学报, 2002, 22(2): 177-183.<br />
LIN Guiping, YU Minxian.Metal hydride heat pump and its application in manned space life insurance system[J]. Journal of Space Science, 2002, 22(2): 177-183.<br />
[62] 孙大文, 邓颂九, 李祖鑫. 金属氢化物热泵特性系数的计算模型[J]. 华南理工大学学报(自然科学版), 1988(1): 116-125.<br />
SUN Dawen, DENG Songjiu, LI Zuxin.Calculation model of characteristic coefficient of metal hydride heat pump[J]. Journal of South China University of Technology (Natural Science Edition), 1988(1): 116-125.<br />
[63] 鲍泽威, 杨福胜, 吴震, 等. 金属氢化物反应器吸氢过程的热质传递特性分析[J]. 西安交通大学学报, 2012, 46(9): 49-54.<br />
BAO Zewei, YANG Fusheng, WU Zhen, et al.Analysis of heat and mass transfer characteristics of hydrogen absorption in metal hydride reactor[J]. Journal of Xi’an Jiaotong University, 2012, 46(9): 49-54.<br />
[64] 阳明, 覃峰, 陈江平, 等. 新型金属氢化物板式反应床的传热特性[J]. 上海交通大学学报, 2009(9): 1456-1460.<br />
YANG Ming, QIN Feng, CHEN Jiangping, et al.Heat transfer characteristics of a new metal hydride plate reactor[J]. Journal of Shanghai Jiaotong University, 2009(9): 1456-1460.<br />
[65] SHEN D, ZHAO C Y.Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals[J]. Chemical Engineering Science, 2013, 98(29): 273-281. |
|
|
|