|
|
Electrochemical corrosion behavior of binderless TiCN-based cermets in NaOH solution |
XIAO Qiaoping, ZHANG Li, LUO Guokai, CUI Yanming, WU Houping, HUANG Long |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Four binderless TiCN-based cermets TiC0.4N0.6, TiC0.7N0.3, TiC0.7N0.3-29WC-12TaC and TiC0.7N0.3-29WC- 12TaC-2Mo2C with a relative density greater than 98.5% were prepared by spark plasma sintering (SPS). Scanning electron microscopy SEM observation shows that the average grain size of binderless TiC0.4N0.6 is substantially larger than that of other three groups. Electrochemical corrosion behaviors of binderless TiCN-based cermets in 0.1 mol/L NaOH solution were investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the corrosion resistance of the cermets in NaOH solution follows the following order, i.e., TiC0.7N0.3>TiC0.7N0.3- 29WC-12TaC>TiC0.7N0.3-29WC-12TaC-2Mo2C>TiC0.4N0.6. The increase of nitrogen and the addition of metal carbides are detrimental to the corrosion resistance of cermets. The oxidation product formed during the corrosion process can act as a passivation film, which results in a pseudo-passivation phenomenon. Binderless TiC0.7N0.3 cermet has the highest relative densification (99.5%) and the best corrosion resistance.
|
Received: 16 October 2018
Published: 12 July 2019
|
|
|
|
|
[1] LENGAUER W, SCAGNETTO F.Ti(C,N)-based cermets: critical review of achievements and recent developments[J]. Solid State Phenomena, 2018, 274: 53-100. [2] SHANKAR E, PRABU S B.Microstructure and mechanical properties of Ti(C,N) based cermets reinforced with different ceramic particles processed by spark plasma sintering[J]. Ceramics International, 2017, 43(14): 10817-10823. [3] 陈敏, 肖玄, 张雪峰. TaC含量对TiCN基金属陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(2): 270-275. CHEN Min, XIAO Xuan, ZHANG Xuefeng.Effect of TaC content on microstructure and properties of TiCN-based cermets[J]. Powder Metallurgy Materials Science and Engineering, 2016, 21(2): 270-275. [4] 余金川, 罗兵辉, 柏振海, 等. 铁镍替代钴硬质合金的微观结构与性能[J]. 粉末冶金材料科学与工程, 2015, 20(6): 844-851. YU Jinchuan, LUO Binghui, BAI Zhenhai, et al.Microstructure and properties of cemented carbides prepared with iron and nickel for substituting cobalt[J]. Powder Metallurgy Materials Science and Engineering, 2015, 20(6): 844-851. [5] 钱中良, 熊惟皓. Ti(C,N)基金属陶瓷的耐腐蚀性[J]. 硬质合金, 1998, 15(1): 16-20. QIAN Zhongliang, XIONG Weihao.Corrosion resistance of Ti(C,N)-based cermets[J]. Cemented Carbide, 1998, 15(1): 16-20. [6] WAN W, XIONG J, GUO Z, et al. Research on the contributions of corrosion, erosion and synergy to the erosion-corrosion degradation of Ti(C,N)-based cermets[J]. Wear, 2015, 326/ 327(5): 36-43. [7] ZHANG L, FENG Y P, NAN Q, et al.Zhe Wang. Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 11-18. [8] 左晓婷, 姚萍屏, 贡太敏, 等. WC粒度对超音速火焰喷涂WC-10Co-4Cr涂层耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2015(1): 106-111. ZUO Xiaoting, YAO Pingping, GONG Taimin, et al.Effect of WC size on corrosion resistance of WC-10Co-4Cr coatings by high velocity oxygen fuel[J]. Powder Metallurgy Materials Science and Engineering, 2015(1): 106-111. [9] GUO Z, XIONG J, WAN W, et al.Effect of binder content on the erosive wear of Ti(C,N)-based cermet in SiO2 particle- containing simulated seawater[J]. International Journal of Applied Ceramic Technology, 2015, 11(6): 1045-1053. [10] TANG W, ZHANG L, CHEN Y, et al.Corrosion and strength degradation behaviors of binderless WC material and WC-Co hardmetal in alkaline solution: a comparative investigation[J]. International Journal of Refractory Metals and Hard Materials, 2017, 68: 1-8. [11] 李重典, 时凯华, 王海霞, 等. 烧结工艺对低粘结相硬质合金性能及微观结构的影响[J]. 粉末冶金材料科学与工程, 2014, 19(5): 695-700. LI Zhongdian, SHI Kaihua, WANG Haixia, et al.Effect of sintering process on properties and microstructure of low binder cemented carbides with low cobalt content[J]. Powder Metallurgy Materials Science and Engineering, 2014, 19(5): 695-700. [12] TANG W, ZHANG L, ZHU J F, et al.Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 90-97. [13] 朱骥飞, 张立, 徐涛, 等. 基于ImageJ软件的硬质合金显微组织参数化定量分析[J]. 粉末冶金材料科学与工程, 2015, 20(1): 26-31. ZHU Jifei, ZHANG Li, XU Tao, et al.Quantificational characterization of microstructural parameters of cemented carbides based on ImageJ software[J]. Powder Metallurgy Materials Science and Engineering, 2015, 20(1): 26-31. [14] LIU C, MA Y Z, LIU W S, et al.Influence of various concentrations (TiC and TiN) on the microstructure and properties of Ti(CN)-based cermets prepared by spark plasma sintering[J]. Transactions of the Indian Ceramic Society, 2016, 75(3): 166-169. [15] 周伟. 高氮含量Ti(C,N)基金属陶瓷的制备及其磨粒磨损特性研究[D]. 南京: 南京航空航天大学, 2013. ZHOU Wei.Research on the preparation and abrasive wear properties of Ti(C,N)-based cermets with high nitrogen content[D]. Nanjing: Nanjing University of Aeronautics and Astronautics the Graduate School, 2013. [16] SHI Z M, ZHANG D Y, CHEN S, et al.Effect of nitrogen content on microstructures and mechanical properties of Ti(C,N)-based cermets[J]. Journal of Alloys and Compounds, 2013, 568(7): 68-72. [17] SHANKAR E, PRABU S B.Influence of WC and cobalt additions on the microstructural and mechanical properties of TiCN-Cr3C2-nano-TiB2, cermets fabricated by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69: 110-118. [18] VERMA V, KUMAR B V M. Sliding wear behavior of SPS processed TaC-containing Ti(CN)-WC-Ni/Co cermets against silicon carbide[J]. Wear, 2017, 376: 1570-1579. [19] 叶登峰, 陈康华, 方华婵. 复合添加Zr、Cr、Pr对超高强铝合金腐蚀和断裂行为的影响[J]. 粉末冶金材料科学与工程, 2011, 16(3): 379-385. YE Dengfeng, CHEN Kanghua, FANG Huachan.Effect of composite additions of Zr, Cr, Pr on corrosion and fracture behavior of super-high strength aluminum alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(3): 379-385. [20] HAMADOU L, AÏNOUCHE L, Kadri A, et al. Electrochemical impedance spectroscopy study of thermally grown oxides exhibiting constant phase element behavior[J]. Electrochimica Acta, 2013, 113(4): 99-108. [21] CAO Z, KONG G, CHE C, et al.Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5wt.%NaCl solution[J]. Applied Surface Science, 2017, 426: 67-76. [22] ZHANG L, CHEN Y, WAN Q L, et al.Electrochemical corrosion behaviors of straight WC-Co alloys: Exclusive variation in grain sizes and aggressive media[J]. International Journal of Refractory Metals and Hard Materials, 2016, 57: 70-77. [23] 罗检, 张勇, 钟庆东, 等. 晶粒度对一些常用金属耐腐蚀性能的影响[J]. 腐蚀与防护, 2012, 33(4): 349-352. LUO Jian, ZHANG Yong, ZHONG Qingdong, et al.Influence of grain size on corrosion resistant of commonly used metals[J]. Corrosion and Protection, 2012, 33(4): 349-352. [24] QIU Weibin, LIU Ying, YE Jinwen, et al.Effects of (Ti,Ta, Nb,W)(C,N) on the microstructure, mechanical properties and corrosion behaviors of WC-Co cemented carbides[J]. Ceramics International, 2017, 43(3): 2918-2926. [25] 董广彪, 熊计, 郭智兴, 等. Mo2C对Ti(C,N)基金属陶瓷腐蚀性能的影响[J]. 硬质合金, 2012, 29(3): 160-166. DONG Guangbiao, XIONG Ji, GUO Zhixing, et al.Effect of Mo2C on corrosion behavior of Ti(C,N)-based cermets[J]. Cemented Carbide, 2012, 29(3): 160-166. [26] NEUSA A F, STEPHAN W.Correlation between corrosion potential and pitting potential for AISI 304L austenitic stainless steel in 3.5%NaCl aqueous solution[J]. Materials Research, 2002, 5(1): 1236-1245. [27] 马鋆, 张立, 南晴, 等. Cr、V、Ta添加剂对超粗晶和特粗晶硬质合金电化学腐蚀行为的影响[J]. 粉末冶金材料科学与工程, 2012, 17(6): 825-832. MA Yun, ZHANG Li, NAN Qing, et al.Effects of Cr, V, Ta additives on electrochemical corrosion behaviors of extra coarse and super extra coarse cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(6): 825-832. [28] MEMARRASHIDI Z, PLUCKNETT K P.The effects of C:N ratio on the aqueous corrosion response of TiC and Ti(C,N) cermets with a Ni3Al-based binder[J]. International Journal of Refractory Metals and Hard Materials, 2016, 61: 162-172. |
|
|
|