|
|
Effects of oxidation time on microstructure and corrosion resistance of micro-arc oxidation film on aluminum alloy |
FANG Lei, MA Yunzhu, LIU Wensheng, LIU Yang, LIU Chao, YAN Huanyuan |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 |
|
|
Abstract Micro-arc oxidation (MAO) films were fabricated on 5052 aluminum alloy by micro-arc oxidation in silicate system (Na2SiO3+KOH) solution. The morphology, elemental distribution and phase composition of MAO films were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).The effects of oxidation time on the film thickness, surface porosity, the maximum hole diameter and the corrosion resistance of the film were analyzed emphatically. The results show that the surface of the micro-arc oxidation film has “volcano deposit” morphology, and the film thickness, surface porosity and pore diameter increase with increasing oxidation time. The film mainly with O and Al elements, is composed of γ-Al2O3 and α-Al2O3 phases, in which the content of γ-Al2O3 phase is higher. The corrosion resistance of MAO treated sample is obviously improved, the corrosion current density is decreased by at least two order of degree magnitude, and the electrochemical impedance modulus |Z| is increased at least two order of degree magnitude. With the oxidation time increasing from 10 min to 50 min, the corrosion resistance of the sample first increases and then decreases. When the oxidation time is 20 min, the sample shows the best corrosion resistance.
|
Received: 25 March 2018
Published: 12 July 2019
|
|
|
|
|
[1] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-358. FANG Huachan, CHEN Kanghua, CHAO Hong, et al.Current research status and prespects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-358. [2] XUE W B, WANG C, TIAN H, et al.Corrosion behaviors and galvanic studies of microarc oxidation films on Al-Zn-Mg-Cu alloy[J]. Surface & Coatings Technology, 2007, 201(21): 8695-8701. [3] HEINZ A, HASZLER A, KEIDEL C, et al.Recent development in aluminum alloys for aerospace applications[J]. Materials Science & Engineering A, 2000, 280(1): 102-107. [4] 何建伟, 王祝堂. 船舶舰艇用铝及铝合金[J]. 轻合金加工技术, 2015, 143(8): 1-11. HE Jianwei, WANG Zhutang.Aluminum and its alloys for ships and naval vessels[J]. Light Alloy Fabrication Technology, 2015, 143(8): 1-11. [5] 王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 北京: 国防工业出版社, 2010: 91-91. WANG Hongbin, FANG Zhigang, JIANG Bailing.Microarc Oxidation Technology and Its Applications In Sea Environments[M]. Beijing: National Defend Industry Press, 2010: 91-91. [6] TSENG C C, LEE J L, KUO T H, et al.The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surface & Coatings Technology, 2012, 206(16): 3437-3443. [7] WALSH F C, LOW C T J, WOOD R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al,Mg,Ti) alloys[J]. Transactions of the Institute of Metal Finishing, 2009, 87(3): 122-135. [8] SHCHEDRINA I, RAKOCH A G, HENRION G, et al.Non-destructive methods to control the properties of MAO coatings on the surface of 2024 aluminium alloy[J]. Surface & Coatings Technology, 2014, 238(2): 27-44. [9] YEROKHIN A L, NIE X, LEYLAND A, et al.Plasma electrolysis for surface engineering[J]. Surface & Coatings Technology, 1999, 122(2/3): 73-93. [10] ZHU M H, CAI Z B, LIN X Z, et al.Fretting wear behaviour of ceramic coating prepared by micro-arc oxidation on Al-Si alloy[J]. Wear, 2007, 263(1/6): 472-480. [11] ARSLAN E, TOTIK Y, DEMIRCI EE, et al.High temperature wear behavior of aluminum oxide layers produced by AC micro arc oxidation[J]. Surface & Coatings Technology, 2009, 204(6): 829-833. [12] 王红美, 尹艳丽, 杜军, 等. 磷酸盐浓度对5083铝合金微弧氧膜组织与耐腐蚀性能的影响[J]. 中国表面工程, 2016, 29(5): 109-115. WANG Hongmei, YIN Yanli, DU Jun, et al.Effects of Na5P3O10 concentration on microstructure and corrosion resistance of micro-arc oxidation coating on 5083 aluminum alloy[J]. China Surface Engineering, 2016, 29(5): 109-115. [13] 苗景国, 郝康达, 卫中领, 等. 高强度铝合金微等离子体电解氧化陶瓷质膜层影响因素[J]. 轻合金加工技术, 2012, 40(4): 52-55. MIAO Jingguo, HAO Kangda, WEI Zhongling, et al.Influence of PEO factors on ceramic coating of aluminum alloy surface[J]. Light Alloy Fabrication Technology, 2012, 40(4): 52-55. [14] KRISHNA L R, POSHAL G, SUNDARARAJAN G.Influence of eletrolyte chemistry on morphology and corrosion resistance of micro arc oxidation coatings deposited on magnesium[J]. Metallurgical & Materials Transactions A, 2010, 41(13): 3499-3508. [15] 孙志华, 国大鹏, 刘明, 等. 工艺参数对2A12铝合金微弧氧化陶瓷层生长的影响[J]. 航空材料学报, 2009, 29(6): 59-65. SUN Zhihua, GUO Dapeng, LIU Ming, et al.Effect of technological parameters on formation process of ceramic films fabricated by micro-arc oxidation[J]. Journal of Aeronautical Materials, 2009, 29(6): 59-65. [16] 邱骥, 帅刚, 马世宁, 等. 5083铝合金喷洒式微弧氧化局部膜层的制备及性能[J]. 中国表面工程, 2015, 28(5): 105-110. QIU Ji, SHUAI Gang, MA Shining, et al.Preparation and properties of local coatings on 5083 aluminum alloy by spraying micro-arc oxidation[J]. China Surface Engineering, 2015, 28(5): 105-110. [17] 朱骥飞, 张立, 徐涛, 等. 基于ImageJ软件的硬质合金显微组织参数化定量分析[J]. 粉末冶金材料科学与工程, 2015(1): 26-31. ZHU Jifei, ZHANG Li, XU Tao, et al.Quantificational characterization of microstructural parameters of cemented carbides based on ImageJ software[J]. Materials Science and Engineering of Powder Metallurgy, 2015(1): 26-31. [18] CHENG Y L, XUE Z G, WANG Q, et al.New findings on properties of plasma electrolytic oxidation coatings from study of an Al-Cu-Li alloy[J]. Electrochimica Acta, 2013, 107(3): 358-378. [19] 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002. CAO Chunan, ZHANG Jianqing.An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002. |
|
|
|