[1] COSTA C M, GONÇALVES R, LANCEROS-MÉNDEZ S, et al. Recent advances and future challenges in printed batteries[J]. Energy Storage Materials, 2020, 28: 216-234.
[2] MARTINEZ A C, SCHIAFFINO E M, ARANZOLA A P, et al.Multiprocess 3D printing of sodium-ion batteries via vat photopolymerization and direct ink writing[J]. Journal of Physics: Energy, 2023, 5(4): 045010.
[3] AL’AREF S J, MOSADEGH B, DUNHAM S, et al. 3D Printing Applications in Cardiovascular Medicine[M]. Amsterdam: Elsevier, 2018.
[4] HE Y J, CHEN S J, NIE L, et al.Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries[J]. Nano Letters, 2020, 20(10): 7136-7143.
[5] LI C, DU J J, GAO Y, et al.Stereolithography of 3D sustainable metal electrodes towards high‐performance nickel iron battery[J]. Advanced Functional Materials, 2022, 32(40): 2205317.
[6] CHEN Q M.Printing 3D lithium‐ion microbattery using stereolithography[D]. West Lafayette: Purdue University, 2016.
[7] NORJELI M F, TAMCHEK N, OSMAN Z, et al.Additive manufacturing polyurethane acrylate via stereolithography for 3D structure polymer electrolyte application[J]. Gels, 2022, 8(9): 589.
[8] COHEN E, MENKIN S, LIFSHITS M, et al.Novel rechargeable 3D-microbatteries on 3D-printed-polymer substrates: feasibility study[J]. Electrochimica Acta, 2018, 265: 690-701.
[9] ANDISETIAWAN A, ALKINDI T, ATATREH S, et al.Stereolithography 3D printing for vanadium redox flow battery: electrolyte compatibility and watertightness of 3D-printed parts[J]. Next Materials, 2025, 6: 100317.
[10] ZEKOLL S, MARRINER-EDWARDS C, OLA HEKSELMAN A K, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(1): 185-201.
[11] KONG D Z, WANG Y, HUANG S Z, et al.3D printed compressible quasi-solid-state nickel-iron battery[J]. Acs Nano, 2020, 14(8): 9675-9686.
[12] ZAERA F.The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing[J]. Journal of Materials Chemistry, 2008, 18(30): 3521-3526.
[13] PARSONS G N, GEORGE S M, KNEZ M.Progress and future directions for atomic layer deposition and ALD-based chemistry[J]. MRS Bulletin, 2011, 36(11): 865-871.
[14] NAZRI M A, NORDIN A N, LIM L M, et al.Fabrication and characterization of printed zinc batteries[J]. Bulletin of Electrical Engineering and Informatics, 2021, 10(3): 1173-1182.
[15] SAIDI A, DESFONTAINES L, CHAMPEVAL A, et al.The effect of ink formulation and electrode geometry design on the electrochemical performance of a printed alkaline battery[J]. Flexible and Printed Electronics, 2017, 2(1): 015002.
[16] VAN DER HEIJDEN M, KROESE M, BORNEMAN Z, et al. Investigating mass transfer relationships in stereolithography 3D printed electrodes for redox flow batteries[J]. Advanced Materials Technologies, 2023, 8(18): 2300611.
[17] CHEN Q M, XU R, HE Z T, et al.Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography[J]. Journal of the Electrochemical Society, 2017, 164(9): 9-18.
[18] IBANEZ J G, RINCÓN M E, GUTIERREZ-GRANADOS S, et al. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors[J]. Chemical Reviews, 2018, 118(9): 4731-4816.
[19] HREHOROVA E, WOOD L K, PEKAROVIC J, et al.The properties of conducting polymers and substrates for printed electronics[J]. NIP & Digital Fabrication Conference, 2005, 21: 197-202.
[20] KAYSER L V, LIPOMI D J.Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS[J]. Advanced Materials, 2019, 31(10): 1806133.
[21] NISHII M, IWABUCHI Y, KOTSUBO H, et al.54.2: Direct printed electrodes of transparent conductive polymers for flexible electronic papers[J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 814-817.
[22] DOERING O M, VETTER C, ALHAWWASH A, et al.Durable scalable 3D SLA‐printed cuff electrodes with high performance carbon + PEDOT: PSS-based contacts[J]. Artificial Organs, 2022, 46(10): 2085-2096.
[23] WANG X, ZHI L J, MÜLLEN K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.
[24] HECHT D S, HU L B, IRVIN G.Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13): 1482-1513.
[25] REDONDO E, NG S, MUÑOZ J, et al. Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature[J]. Nanoscale, 2020, 12(38): 19673-19680.
[26] LEVY A, TOKER G B, CHAN D J L, et al. Hybrid structural electronics fabrication by combined SLA and metal printing[J]. Smart Materials and Structures, 2023, 32(6): 065003.
[27] MA M M, ZHANG M H, JIANG B T, et al.A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces[J]. Materials Chemistry Frontiers, 2023, 7(7): 1268-1297.
[28] SABATO A G, MUÑEZ EROLES M, ANELLI S, et al. 3D printing of self-supported solid electrolytes made of glass-derived Li1.5Al0.5Ge1.5P3O12 for all-solid-state lithium-metal batteries[J]. Journal of Materials Chemistry A, 2023, 11(25): 13677-13686.
[29] KIM C, AHN B Y, WEI T S, et al.High-power aqueous zinc-ion batteries for customized electronic devices[J]. ACS Nano, 2018, 12(12): 11838-11846.