[1] 于化顺. 金属基复合材料及其制备技术[M].北京: 化学工业出版社, 2006.
YU Huashun.Metal Matrix Composites and Their Preparation Technology[M].Beijing: Chemical Industry Press, 2006.
[2] MORTENSEN A, LLORCA J.Metal matrix composites[J].Annual Review of Materials Research, 2010, 40(1): 243-270.
[3] CHAWLA N, CHAWLA K K.Metal-matrix composites in ground transportation[J].The Journal of Minerals, Metals & Materials Society, 2006, 58: 67-70.
[4] RITCHIE R O.The conflicts between strength and toughness[J].Nature Materials, 2011, 10(11): 817-822.
[5] 张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J].中国材料进展, 2010, 29(4): 1-7.
ZHANG Di, ZHANG Guoding, LI Zhiqiang.The current state and trend of metal matrix composites[J].Materials China, 2010, 29(4): 1-7.
[6] 耿林, 范国华. 金属基复合材料的构型强韧化研究进展[J].中国材料进展, 2016, 35(9): 686-693.
GENG Lin, FAN Guohua.Progress on strengthening and toughening mechanism for metal matrix composites by configuration design[J].Materials China, 2016, 35(9): 686-693.
[7] LIU Z, MEYERS M A, ZHANG Z, et al.Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J].Progress in Materials Science, 2017, 88: 467-498.
[8] HUANG W, RESTREPO D, JUNG J Y, et al.Multiscale toughening mechanisms in biological materials and bioinspired designs[J].Advanced Materials, 2019, 31(43): 1901561.
[9] MEYERS M A, CHEN P Y, LOPEZ M I, et al.Biological materials: a materials science approach[J].Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(5): 626-657.
[10] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties[J].Progress in Materials Science, 2008, 53(1): 1-206.
[11] SUN J, BHUSHAN B.Hierarchical structure and mechanical properties of nacre: a review[J].RSC Advances, 2012, 2(20): 7617-7632.
[12] BONDERER L J, STUDART A R, GAUCKLER L J.Bioinspired design and assembly of platelet reinforced polymer films[J].Science, 2008, 319(5866): 1069-1073.
[13] HUANG J, DARYADEL S, MINARY-JOLANDAN M.Low-cost manufacturing of metal-ceramic composites through electrodeposition of metal into ceramic scaffold[J].ACS Applied Materials & Interfaces, 2019, 11(4): 4364-4372.
[14] WALTHER A, BJURHAGER I, MALHO J M, et al.Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J].Nano Letters, 2010, 10(8): 2742-2748.
[15] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展[J].材料导报, 2017, 31(13): 99-112.
ZHANG Xun, LIU Shuhai, XIAO Huaping.Applying freeze-casting technique to fabrication of nacre-like lamellar structured ceramic composites: a state-of-the-art review[J].Materials Reports, 2017, 31(13): 99-112.
[16] CLEGG W J, KENDALL K, ALFORD N M N, et al. A simple way to make tough ceramics[J].Nature, 1990, 347(6292): 455-457.
[17] FAN G L, XU R, TAN Z Q, et al.Development of flake powder metallurgy in fabricating metal matrix composites: a review[J].Acta Metallurgica Sinica (English Letters), 2014, 27: 806-815.
[18] 王雷, 尹华, 徐润, 等. 原位碳纳米管/铝基复合材料的制备与力学性能[J].粉末冶金材料科学与工程, 2019, 24(1): 63-68.
WANG Lei, YIN Hua, XU Run, et al.Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites[J].Materials Science and Engineering of Powder Metallurgy, 2019, 24(1): 63-68.
[19] WILKERSON R P. Biomimetic “Nacre-Like”, Metal- Compliant-Phase Ceramics Produced via Coextrusion[M].Berkeley: University of California, 2018.
[20] LI G J, LI Y S, YANG L K, et al.Strong hybrid cellular/lamellar ceramic/polymer composites via emulsification freeze casting[J].Journal of the American Ceramic Society, 2025, 108(2): e20164.
[21] WU J P, WANG Y, ZHANG J S, et al.A lightweight aramid-based structural composite with ultralow thermal conductivity and high-impact force dissipation[J].Matter, 2022, 5(7): 2265-2284.
[22] HONG L Y, GUO X, LI G J, et al.Multi-directional freeze-casting of interpenetrating phase composites with multi-aligned structure, nearly isotropy, high performance[J].Materials & Design, 2024, 244: 113172.
[23] YANG L K, JIN Q, GUO R F, et al.Exploiting bio-inspired high energy-absorbent metal/ceramic composites through emulsion-ice-templating and melt infiltration[J].Materialia, 2020, 14: 100884.
[24] DEVILLE S.Freeze-casting of porous ceramics: a review of current achievements and issues[J].Advanced Engineering Materials, 2008, 10(3): 155-169.
[25] MOLINA J M, VOYTOVYCH R, LOUIS E, et al.The surface tension of liquid aluminium in high vacuum: the role of surface condition[J].International Journal of Adhesion and Adhesives, 2007, 27(5): 394-401.
[26] GUO R F, GUO N, SHEN P, et al.Effects of ceramic lamellae compactness and interfacial reaction on the mechanical properties of nacre-inspired Al/Al2O3-ZrO2 composites[J].Materials Science and Engineering A, 2018, 718: 326-334.
[27] FUJII H, NAKAE H, OKADA K.Interfacial reaction wetting in the boron nitride/molten aluminum system[J].Acta Metallurgica et Materialia, 1993, 41(10): 2963-2971.
[28] EUSTATHOPOULOS N, NICHOLAS M G, DREVET B.Wettability at High Temperatures[M].Oxford: Elsevier, 1999.