[1] QIN Z, XU X J, XU T F, et al.High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society, 2022, 42(15): 7209-7218.
[2] WANG R Z, SUN J C, ZHANG R B.Super-flexible and low-shrinkage polyimide aerogel composites with excellent thermal insulation: boosted by SiO2 micron aerogel powder[J]. Materials Letters, 2024, 371: 136882.
[3] CAI H F, JIANG Y G, FENG J, et al.Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials & Design, 2020, 191: 108640.
[4] CAO C Y, WANG R X, XING X D, et al.Performance improvement of integrated thermal protection system using shaped-stabilized composite phase change material[J]. Applied Thermal Engineering, 2020, 164: 114529.
[5] KHAN T, ACAR V, AYDIN M R, et al.A review on recent advances in sandwich structures based on polyurethane foam cores[J]. Polymer Composites, 2020, 41(6): 2355-2400.
[6] SHAFI S, ZHAO Y.Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials, 2020, 27(2): 495-502.
[7] WANG X, HU Z, SUN C, et al.Fibrous porous ceramics with devisable phenolic resin reinforcing layer[J]. Ceramics International, 2019, 45(5): 5413-5417.
[8] CHEN Y F, HONG C Q, HU C L, et al.Thermal protective ceramic materials for aerospace vehicles[J]. Modern Technical Ceramics, 2017, 38(5): 311-390.
[9] ESZTER B, KOLOS M, JÁNOS M, et al. Preparation and characterization of fibrous alumina and zirconia toughened alumina ceramics with gradient porosity[J]. Nanomaterials, 2022, 12(23): 4165.
[10] WANG Z Y, XU X J, XU T F, et al.Porous mullite fiber-based ceramics inspired by biomimetic natural pine wood[J]. Ceramics International, 2024, 50(1): 584-592.
[11] LI X, LI S, WEN Q C, et al.Multilayered mullite ceramics with anisotropic properties[J]. Journal of the European Ceramic Society, 2023, 43(13): 5606-5615.
[12] CHEN M, SONG Z J, LEI H Y, et al.Reaction mechanisms and properties of in situ porous Al2O3-ZrO2-mullite composites[J]. Ceramics International, 2023, 49(18): 29829-29837.
[13] LIU J, REN B, ZHU T, et al.Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure[J]. Ceramics International, 2018, 44(11): 13240-13246.
[14] LIU D, HU P, ZHAO G, et al.Silica bonded mullite fiber composite with isotropic geometry and properties for thermal insulating[J]. Journal of Alloys and Compounds, 2017, 728: 1049-1057.
[15] BIGGEMANN J, STUMPF M, FEY T.Porous alumina ceramics with multimodal pore size distributions[J]. Materials, 2021, 14(12): 3294.
[16] DONG Y, WANG C A, ZHOU J, et al.A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties[J]. Journal of the European Ceramic Society, 2012, 32(10): 2213-2218.
[17] YUAN L, MA B, ZHU Q, et al.Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process[J]. Ceramics International, 2017, 43(7): 5478-5483.
[18] YANG M, LUO X, YI J, et al.A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation[J]. Ceramics International, 2018, 44(11): 12664-12669.
[19] DONG X, SUI G, YUN Z, et al.Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method[J]. Materials & Design, 2016, 90: 942-948.
[20] YUAN L, LIU Z L, TIAN C, et al.Structure and properties of Al2O3-bonded porous fibrous YSZ ceramics fabricated by aqueous gel-casting[J]. Ceramics International, 2021, 47(18): 25408-25415.
[21] ZHANG R, HOU X, YE C, et al.Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite-zirconia composites produced using sol-gel impregnation[J]. Journal of Alloys and Compounds, 2017, 699: 511-516.
[22] WU L, LI C, CHEN Y, et al.Seed assisted in-situ synthesis of porous anorthite/mullite whisker ceramics by foam-freeze casting[J]. Ceramics International, 2021, 47(8): 11193-11201.
[23] ZHANG J, DONG X, HOU F, et al.Effects of fiber length and solid loading on the properties of lightweight elastic mullite fibrous ceramics[J]. Ceramics International, 2016, 42(4): 5018-5023.
[24] JIA T, CHEN H, DONG X, et al.Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide[J]. Ceramics International, 2019, 45(2): 2474-2482.
[25] STANISHEVSKY A, SEVERINO C, ROSS S, et al.Nanofibrous glass/ceramic porous structures using high-temperature interface bonding[J]. Materials Today Communications, 2021, 27: 102218.
[26] 和祥, 黄千里, 陈煜辉, 等. 多孔氧化铝陶瓷材料的制备工艺研究进展[J]. 粉末冶金材料科学与工程, 2021, 26(6): 483-491.
HE Xiang, HUANG Qianli, CHEN Yuhui, et al.Research progress on the fabrication technology of porous alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 483-491.
[27] 方豪杰, 贺亦文, 张晓云, 等. 烧结助剂对非等温烧结法制备氧化铝陶瓷微观结构和性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(6): 525-530.
FANG Haojie, HE Yiwen, ZHANG Xiaoyun, et al.Effects of sintering aids on microstructure and properties of non-isothermal sintering alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 525-530.
[28] ZHANG W, XIANG Y, HUANG M, et al.Microstructural and mechanical characterization of a mullite fiber[J]. Ceramics International, 2021, 47(23): 33252-33258.
[29] BAN E, BAROCAS V H, SHEPHARD M S, et al.Softening in random networks of non-identical beams[J]. Journal of the Mechanics & Physics of Solids, 2016, 87: 38-50.
[30] 金杰. 基于细观力学理论的颗粒增强复合材料脱粘损伤研究[D]. 秦皇岛: 燕山大学, 2015.
JIN Jie.Constitutive theory and damage analysis of particulate-reinforced composites[D]. Qinhuangdao: Yanshan University, 2015.