[1] WONG K V, HERNANDEZ A.A review of additive manufacturing[J]. International Scholarly Research Notices, 2012, 2012: 208760.
[2] KUAH K X, BLACKWOOD D J, ONG W K, et al.Analysis of the corrosion performance of binder jet additive manufactured magnesium alloys for biomedical applications[J]. Journal of Magnesium and Alloys, 2022, 10(5): 1296-1310.
[3] SALEHI M, KUAH K X, HUANG Z, et al.Enhancing densification in binder jet additive manufacturing of magnesium via nanoparticles as sintering aids[J]. Journal of Manufacturing Processes, 2023, 99: 705-717.
[4] LI M, YANG Q, ZHAO Z, et al.Full liquid phase sintering of binder jetting printed magnesium alloy[J]. Journal of Manufacturing Processes, 2023, 108: 194-203.
[5] 吴谊友, 丁柔, 陈超, 等. 3D打印铜及铜合金的研究进展[J]. 粉末冶金材料科学与工程, 2022, 27(2): 121-128.
WU Yiyou, DING Rou, CHEN Chao, et al.Research progress on 3D printing of copper and copper alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 121-128.
[6] SALEHI M, KUAH K X, HO J H, et al.Towards binder jetting and sintering of AZ91 magnesium powder[J]. Crystals, 2023, 13(2): 286.
[7] XU M, GUO H, WANG Y, et al.Mechanical properties and microstructural characteristics of 316L stainless steel fabricated by laser powder bed fusion and binder jetting[J]. Journal of Materials Research and Technology, 2023, 24: 4427-4439.
[8] NANDWANA P, ELLIOTT A M, SIDDEL D, et al.Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges[J]. Current Opinion in Solid State and Materials Science, 2017, 21(4): 207-218.
[9] MOSTAFAEI A, BEHNAMIAN Y, KRIMER Y L, et al.Effect of solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625[J]. Materials & Design, 2016, 111: 482-491.
[10] KARLSSON D, LINDWALL G, LUNDBÄCK A, et al. Binder jetting of the AlCoCrFeNi alloy[J]. Additive Manufacturing, 2019, 27: 72-79.
[11] CHEN L, FU Z, CHEN W, et al.Enhancing mechanical properties and electrochemical behavior of equiatomic FeNiCoCr high-entropy alloy through sintering and hot isostatic pressing for binder jet 3D printing[J]. Additive Manufacturing, 2024, 81: 103999.
[12] KHADEMITAB M, DE VECCHIS P R, STASZEL P, et al. Structure-property relationships of differently heat-treated binder jet printed Co-Cr-Mo biomaterial[J]. Materials Today Communications, 2024, 38: 107716.
[13] MOSTAFAEI A, DE VECCHIS P R, BUCKENMEYER M J, et al. Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3d-printed stellite 6[J]. Materials Science & Engineering C, 2019, 102: 276-288.
[14] PARANS PARANTHAMAN M, SHAFER C S, ELLIOTT A M, et al.Binder jetting: a novel NdFeB bonded magnet fabrication process[J]. The Journal of the Minerals, Metals & Materials Society, 2016, 68(7): 1978-1982.
[15] ANDERSON I E, WHITE E M H, DEHOFF R. Feedstock powder processing research needs for additive manufacturing development[J]. Current Opinion in Solid State & Materials Science, 2018, 22(1): 8-15.
[16] CHEN H A, WEI Q A, ZHANG Y A, et al.Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling[J]. Acta Materialia, 2019, 179: 158-171.
[17] OJEA S B, TORRENTS-BARRENA J, PÉREZ-PRADO M T, et al. Binder jet green parts microstructure: advanced quantitative analysis[J]. Journal of Materials Research and Technology, 2023, 23: 3974-3986.
[18] ANTONY L V M, REDDY R G. Processes for production of high-purity metal powders[J]. The Journal of the Minerals, Metals & Materials Society, 2003, 55(3): 14-18.
[19] WU J, XIA M, WANG J, et al.Effect of electrode induction melting gas atomization process on fine powder yields: continuous metal melt flow[J]. Archives of Metallurgy & Materials, 2023, 68(3): 839-849.
[20] SEKI Y, OKAMOTO S, TAKIGAWA H, et al.Effect of atomization variables on powder characteristics in the high-pressured water atomization process[J]. Metal Powder Report, 1990, 45(1): 38-40.
[21] JIANG R, MONTEIL L, KIMES K, et al.Influence of powder type and binder saturation on binder jet 3D-printed and sintered Inconel 625 samples[J]. International Journal of Advanced Manufacturing Technology, 2021, 116(11/12): 1-12.
[22] HAPGOOD K P, LITSTER J D, BIGGS S R, et al.Drop penetration into porous powder beds[J]. Journal of Colloid and Interface Science, 2002, 253(2): 353-366.
[23] CHEN Q, JUSTE E, LASGORCEIX M, et al.Binder jetting process with ceramic powders: influence of powder properties and printing parameters[J]. Open Ceramics, 2022, 9: 100218.
[24] ZHOU Z, BUCHANAN F, MITCHELL C, et al.Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique[J]. Materials Science & Engineering C, 2014, 38: 1-10.
[25] HOFFMANN A C, FINKERS H J.A relation for the void fraction of randomly packed particle beds[J]. Powder Technology, 1995, 82(2): 197-203.
[26] SPIERINGS A B, LEVY G.Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades[C]// 2009 International Solid Freeform Fabrication Symposium. Austin, Texas: University of Texas at Austin, 2009: 342-353.
[27] LI M, MIAO G, DU W, et al.Difference between powder bed density and green density for a free-flowing powder in binder jetting additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 84: 448-456.
[28] BENSON J M, SNYDERS E.The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility[J]. South African Journal of Industrial Engineering, 2015, 26(2): 104-114.
[29] MAO T, KUHN D C S, TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. American Institute of Chemical Engineers Journal, 1997, 43(9): 2169-2179.
[30] MCGEARY R K.Mechanical packing of spherical particles[J]. Journal of the American Ceramic Society, 1961, 44(10): 513-522.
[31] ZHU H H, FUH J Y H, LU L. The influence of powder apparent density on the density in direct laser-sintered metallic parts[J]. International Journal of Machine Tools and Manufacture, 2006, 47(2): 294-298.
[32] BAI Y, WAGNER G, WILLIAMS C B.Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals[J]. Journal of Manufacturing Science & Engineering, 2017, 139(8): 1-6.
[33] BATMAZ R, ZARDOSHTIAN A, SABISTON T, et al.An investigation into sinterability improvements of 316L binder jet printed parts[J]. Metallurgical and Materials Transactions A, 2022, 53(3): 915-926.
[34] ZIEGELMEIER S, CHRISTOU P, WÖLLECKE F, et al. An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties[J]. Journal of Materials Processing Technology, 2015, 215(1): 239-250.
[35] UTELA B, STORTI D, ANDERSON R, et al.A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2): 96-104.
[36] SACHS E, ALLEN S, GUO H, et al.Progress on tooling by 3D printing conformal cooling, dimensional control, surface finish and hardness[C]// 1997 International Solid Freeform Fabrication Symposium. Austin, Texas: University of Texas at Austin, 1997: 115-123.
[37] YOO J, CIMA M J, KHANUJA S, et al.Structural ceramic components by 3D printing[C]// 1993 International Solid Freeform Fabrication Symposium. Austin, Texas: University of Texas at Austin, 1993: 40-50.
[38] SACHS E M, CIMA M J, WILLIAMS P, et al.Three dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. Journal of Engineering for Industry, 1992, 114(4): 481-488.
[39] KERNAN B D, SACHS E M, OLIVEIRA M A.Three-dimensional printing of tungsten carbide-10wt% cobalt using a cobalt oxide precursor[J]. International Journal of Refractory Metals and Hard Materials, 2007, 25(1): 82-94.
[40] BAI Y, WILLIAMS C.Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor[J]. Materials & Design, 2018, 147: 146-156.
[41] SACHS E M, HADJILOUCAS C, ALLEN S, et al. Metal and ceramic containing parts produced from powder using binders derived from salt: DE19986027844T[P].2003-01-21.
[42] BUI H M, SZLIG G, MANN P F, et al.Comparison of direct ink writing and binder jetting for additive manufacturing of Pt/Al2O3 catalysts for the dehydrogenation of perhydro- dibenzyltoluene[J]. Chemical Engineering Journal, 2023, 458: 141361.
[43] MALEKSAEEDI S, MEENASHISUNDARAM G K, LU S, et al.Hybrid binder to mitigate feed powder segregation in the inkjet 3D printing of titanium metal parts[J]. Metals, 2018, 8(5): 322.
[44] ZHAO H, YE C, FAN Z, et al.3D printing of CaO-based ceramic core using nanozirconia suspension as a binder[J]. Journal of the European Ceramic Society, 2017, 37(15): 5119-5125.
[45] GILMER D, KIM S, GOLDSBY D J, et al.Predictive binder jet additive manufacturing enabled by clean burn-off binder design[J]. Additive Manufacturing, 2024, 80: 103955.
[46] YANG Q, LI M, ZHAO Z, et al.Simulation of Binder jetting and analysis of magnesium alloy bonding mechanism[J]. 3D Printing and Additive Manufacturing, 2022, 11(2): e751-e763.
[47] BAI Y, WALL C, PHAM H, et al.Characterizing binder-powder interaction in binder jetting additive manufacturing via sessile drop goniometry[J]. Journal of Manufacturing Science & Engineering, 2019, 141(1): 1-11.
[48] AGLAND S, IVESON S M.The Impact of Liquid Drops on Powder Bed Surfaces[M]// Chemeca 99: Chemical Engineering: Solutions in a Changing Environment. Barton, A.C.T: Institution of Engineers, Australia, 1999: 218-224.
[49] ZHAO Y, LI M, LONG R, et al.Computational fluid dynamic analysis of an adsorption-based cogeneration osmotic heat engines with stepwise porosity distribution[J]. Chemical Engineering Science, 2023, 282: 119347.
[50] BECHTEL S E, BOGY D B, TALKE F E.Impact of a liquid drop against a flat surface[J]. IBM Journal of Research and Development, 1981, 25(6): 963-971.
[51] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al.Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650-659.
[52] RAVEL R, PUCCI M F, DIVIN S, et al.Combining experiments and modeling to predict the competition between liquid spreading and impregnation in porous media for metal binder jetting applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666: 131347.
[53] FAN T.Droplet-powder impact interaction in three dimensional printing[D]. Massachusetts: Massachusetts Institute of Technology, 1995.
[54] MIYANAJI H, ORTH M, AKBAR J M, et al.Process development for green part printing using binder jetting additive manufacturing[J]. Frontiers of Mechanical Engineering, 2018, 3(4): 504-512.
[55] OOSTVEEN M L M, MEESTERS G M H, VAN OMMEN J R. Quantification of powder wetting by drop penetration time[J]. Powder Technology, 2015, 274: 62-66.
[56] CHUN S, KIM T, YE B, et al.Capillary pressure and saturation of pore-controlled granules for powder bed binder jetting[J]. Applied Surface Science, 2020, 515: 145979.
[57] WAGNER J J, HIGGS C F.Coupled CFD-DEM simulation of interfacial fluid-particle interaction during binder jet 3D printing[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116747.
[58] ERHARD P, TANJAVOORU V T, HARTMANN C, et al.Simulation of binder infiltration in additive manufacturing of sand molds[J]. Advanced Engineering Materials, 2023, 25(20): 2300212.
[59] 陈致伊. 黏结剂喷射增材制造中铺粉及多液滴渗透模拟与实验研究[D]. 广州: 华南理工大学, 2022.
CHEN Zhiyi.Simulation and experimental study on powder spreading and multi-droplet penetration in binder spray additive manufacturing[D]. Guangzhou: South China University of Technology, 2022.
[60] EMADY H N, KAYRAK-TALAY D, SCHWERIN W C, et al.Granule formation mechanisms and morphology from single drop impact on powder beds[J]. Powder Technology, 2011, 212(1): 69-79.
[61] EMADY H N, KAYRAK-TALAY D, LITSTER J D.Modeling the granule formation mechanism from single drop impact on a powder bed[J]. Journal of Colloid and Interface Science, 2013, 393(1): 369-376.
[62] COLTON T, LIECHTY J, MCLEAN A, et al.Influence of drop velocity and droplet spacing on the equilibrium saturation level in binder jetting[C]// 2019 International Solid Freeform Fabrication Symposium. Austin, Texas: University of Texas at Austin, 2019: 99-108.
[63] MIYANAJI H, ZHANG S, LASSELL A, et al.Process development of porcelain ceramic material with binder jetting process for dental applications[J]. The Journal of the Minerals, Metals & Materials Society, 2016, 68(3): 831-841.
[64] CRANE N B.Impact of part thickness and drying conditions on saturation limits in binder jet additive manufacturing[J]. Additive Manufacturing, 2020, 33: 101127.
[65] SHRESTHA S, MANOGHARAN G.Optimization of binder jetting using taguchi method[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(3): 491-497.
[66] KAFARA M, KEMNITZER J, WESTERMANN H H, et al.Influence of binder quantity on dimensional accuracy and resilience in 3D-printing[J]. Procedia Manufacturing, 2018, 21: 638-646.
[67] SIMCHI A.The role of particle size on the laser sintering of iron powder[J]. Metallurgical and Materials Transactions B, 2004, 35(5): 937-948.
[68] LU K, REYNOLDS W T.3DP process for fine mesh structure printing[J]. Powder Technology, 2009, 187(1): 11-18.
[69] SALEHI M, GUPTA M, MALEKSAEEDI S, et al.Inkjet Based 3D Additive Manufacturing of Metals[M]. Millersville, PA: Materials Research Forum LLC, 2018.
[70] ZHANG W, MELCHER R, TRAVITZKY N, et al.Three-dimensional printing of complex-shaped alumina/glass composites[J]. Advanced Engineering Materials, 2009, 11(12): 1039-1043.
[71] FARZADI A, SOLATI-HASHJIN M, ASADI-EYDIVAND M, et al.Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering[J]. Public Library of Science One, 2014, 9(9): e108252.
[72] ASADI-EYDIVAND M, SOLATI-HASHJIN M, FARZAD A, et al.Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 57-67.
[73] ASADI-EYDIVAND M, SOLATI-HASHJIN M, ABU OSMAN N A. Mechanical behavior of calcium sulfate scaffold prototypes built by solid free-form fabrication[J]. Rapid Prototyping Journal, 2018, 24(8): 1392-1400.
[74] CASTILHO M, DIAS M, GBURECK U, et al.Fabrication of computationally designed scaffolds by low temperature 3D printing[J]. Biofabrication, 2013, 5(3): 35011-35012.
[75] YAO A W L, TSENG Y C. A robust process optimization for a powder type rapid prototyper[J]. Rapid Prototyping Journal, 2002, 8(3): 180-189.
[76] MIN K S, PARK K M, LEE B C, et al.Chloride diffusion by build orientation of cementitious material-based binder jetting 3D printing mortar[J]. Materials, 2021, 14(23): 7452.
[77] GARDAN J.Method for characterization and enhancement of 3D printing by binder jetting applied to the textures quality[J]. Assembly Automation, 2017, 37(2): 162-169.
[78] MOSTAFAEI A, STEVENS E L, HUGHES E T, et al.Powder bed binder jet printed alloy 625: densification, microstructure and mechanical properties[J]. Materials & Design, 2016, 108: 126-135.
[79] JIMENEZ E M, DING D M, SU L S, et al.Parametric analysis to quantify process input influence on the printed densities of binder jetted alumina ceramics[J]. Additive Manufacturing, 2019, 30: 100864.
[80] PARTELI E J R, PÖSCHEL T. Particle-based simulation of powder application in additive manufacturing[J]. Powder Technology, 2016, 288: 96-102.
[81] YU Y, MA T, WANG S.Study on the powder-spreading process of walnut shell/Co-PES biomass composite powder in additive manufacturing[J]. Materials, 2023, 16(12): 4295.
[82] WU S, YANG Y, HUANG Y, et al.Study on powder particle behavior in powder spreading with discrete element method and its critical implications for binder jetting additive manufacturing processes[J]. Virtual and Physical Prototyping, 2023, 18(1): e2158877.
[83] MIYANAJI H, MOMENZADEH N, YANG L.Effect of printing speed on quality of printed parts in binder jetting process[J]. Additive Manufacturing, 2018, 20: 1-10.
[84] CAO X P, LI Z J.Factors Influencing the Mechanical Properties of Three-Dimensional Printed Products From Magnesium Potassium Phosphate Cement Material[M]// SANJAYAN J G, NAZARI A, NEMATOLLAHI B. 3D Concrete Printing Technology. Oxford: Butterworth- Heinemann, 2019: 211-222.
[85] LV X, YE F, CHENG L, et al.Binder jetting of ceramics: powders, binders, printing parameters, equipment, and post-treatment[J]. Ceramics International, 2019, 45(10): 12609-12624.
[86] COX S C, THORNBY J A, GIBBONS G J, et al.3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications[J]. Materials Science and Engineering C, 2015, 47: 237-247.
[87] WHEAT E, VLASEA M, HINEBAUGH J, et al.Sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing[J]. Materials & Design, 2018, 156: 167-183.
[88] HUBER D, VOGEL L, FISCHER A.The effects of sintering temperature and hold time on densification, mechanical properties and microstructural characteristics of binder jet 3D printed 17-4 PH stainless steel[J]. Additive Manufacturing, 2021, 46: 102114.
[89] LECIS N, MARIANI M, BELTRAMI R, et al.Effects of process parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder jetting[J]. Materials Science & Engineering A, 2021, 828: 142108.
[90] MIAO T, ZHAN S, CHEN X, et al.Effect of sintering temperature on microstructure characteristics of porous NiTi alloy fabricated via elemental powder sintering[J]. Materials, 2024, 17(3): 743.
[91] YANG K, LI Q, CHEN T, et al.High-performance 3D-printed Al2O3 cores for low-temperature sintering[J]. Ceramics International, 2023, 49(22): 36894-36906.
[92] TISCHEL F, REINEKE L, ALRASHDAN J, et al.Experimental investigation and modeling of densification during sintering of binder jetted Ti-6Al-4V[J]. Powder Technology, 2024, 444: 119958.
[93] WANG Q, LI J, HU S, et al.Eeffect of sintering temperature and holding time on microstructures and properties of AlCoCrFeNi2.1 eutectic high entropy alloy by binder jetting additive manufacturing[J]. Chinese Journal of Nonferrous Metals, 2024, 34(4): 1201-1214.
[94] ZHANG K, ZHANG W, BRUNE R, et al.Numerical simulation and experimental measurement of pressureless sintering of stainless steel part printed by binder jetting additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102330.
[95] NGUYEN D S, PARK H S, LEE C M.Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning[J]. Journal of Manufacturing Processes, 2020, 55: 230-235.
[96] KANNAN R, NANDWANA P.Predicting sintering window of binder jet additively manufactured parts using a coupled data analytics and CALPHAD approach[J]. Integrating Materials and Manufacturing Innovation, 2023, 12(4): 421-429.
[97] CHEN Z, CHEN W, CHEN L, et al.Influence of initial relative densities on the sintering behavior and mechanical behavior of 316L stainless steel fabricated by binder jet 3D printing[J]. Materials Today Communications, 2022, 31: 103369.
[98] RIOS A C, MISHUROVA T, CORDOVA L, et al.Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L[J]. Materials & Design, 2024, 238: 112690.
[99] ONLER R, KOCA A S, KIRIM B, et al.Multi-objective optimization of binder jet additive manufacturing of Co-Cr-Mo using machine learning[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(1/2): 1091-1108.
[100] SATTERLEE N, JIANG R, OLEVSKY E, et al.Robust image-based cross-sectional grain boundary detection and characterization using machine learning[J/OL]. Journal of Intelligent Manufacturing, [2024-09-12].https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:001214809800001. DOI: 10.1007/s10845-024-02383-6.
[101] MOSTAFAEI A, STEVENS E L, FERENCE J J, et al.Binder jetting of a complex-shaped metal partial denture framework[J]. Additive Manufacturing, 2018, 21: 63-68.
[102] WANG Y, LI X, LI C, et al.Binder droplet impact mechanism on a hydroxyapatite microsphere surface in 3D printing of bone scaffolds[J]. Journal of Materials Science, 2015, 50(14): 5014-5023.
[103] MIYANAJI H, MA D, ATWATER M A, et al.Binder jetting additive manufacturing of copper foam structures[J]. Additive Manufacturing, 2020, 32: 100960.
[104] 刘金城. 福特和ExOne开发粘结剂喷射铝合金3D打印高密度烧结成形技术[J]. 铸造, 2021, 70(7): 887.
LIU Jincheng.Ford and ExOne develop binder jetting aluminum alloy 3D printing technology for high-density sintering formation[J]. Foundry, 2021, 70(7): 887.
[105] WIELAND S, PETZOLDT F.Binder jet 3D-printing for metal additive manufacturing: applications and innovative approaches[J]. Ceramic Forum International, 2016, 93(10): E26-E30.