[1] FAN X G, YANG H, GAO P F, et al.The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy[J]. Journal of Materials Processing Technology, 2016, 234: 290-299.
[2] 杨明. AZ80镁合金动态再结晶行为与超塑性行为研究[D]. 洛阳: 河南科技大学, 2011.
YANG Ming.The study on the dynamic recrystallization behaviors and the superplastic behaviors for AZ80 magnesium alloy[D]. Luoyang: Henan University of Science and Technology, 2011.
[3] SAKAI T, BELYAKOV A, KAIBYSHEV R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60: 130-207.
[4] DOHERTY R D, HUGHES D A, HUMPHREYS F J, et al.Current issues in recrystallization: a review[J]. Materials Today, 1997, 238(2): 219-274.
[5] HUANG K, LOGÉ R E.A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111: 548-574.
[6] DING S, TAYLOR T, KHAN S A, et al.Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization[J]. Journal of Materials Processing Technology, 2022, 299: 117359.
[7] DING S, ZHANG J, KHAN S A, et al.Metadynamic recrystallization in A5083 aluminum alloy with homogenized and as-extruded initial microstructures[J]. Materials Science and Engineering A, 2022, 838: 142789.
[8] 彭昱钦, 李应新, 梁霄鹏, 等. 热等静压成形Ti-45Al-7Nb-0.3W合金热轧板材的超塑性变形行为[J]. 粉末冶金材料科学与工程, 2022, 27(4): 419-425.
PENG Yuqin, LI Yingxin, LIANG Xiaopeng, et al.Superplastic deformation behavior of hot isostatic pressed Ti-45Al-7Nb-0.3W hot-rolled alloy sheet[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(4): 419-425.
[9] LI Y, SHEN P, ZHANG H, et al.Deformation heterogeneity induced coarse grain refinement of the mixed-grain structure of 316LN steel through limited deformation condition[J]. Materials & Design, 2021, 210: 110057.
[10] 王冠强, 陈明松, 蔺永诚, 等. GH4169合金锻造混晶组织的均匀细化机制与工艺[J]. 精密成形工程, 2021, 13(1): 78-83.
WANG Guanqiang, CHEN Mingsong, LIN Yongcheng, et al.Uniformly refining mechanism and technology of mixed-grain for forged GH4169 superalloy[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 78-83.
[11] GHADERI A, HODGSON P D, BARNETT M R.β-Ti grain refinement via α-precipitation[J]. Metallurgical and Materials Transactions A, 2015, 47(3): 1322-1330.
[12] 卢嘉欣, 陈查坤, 方铁辉. 再结晶分布对316L不锈钢力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(5): 475-481.
LU Jiaxin, CHEN Zhakun, FANG Tiehui.Effects of distribution of recrystalline grains on mechanical properties of 316L stainless steel[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 475-481.
[13] FAN J, LI J, KOU H, et al.Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333[J]. Materials & Design, 2015, 83: 499-507.
[14] JIA J B, LIU W C, XU Y, et al.Microstructure evolution, B2 grain growth kinetics and fracture behaviour of a powder metallurgy Ti-22Al-25Nb alloy fabricated by spark plasma sintering[J]. Materials Science and Engineering A, 2018, 730: 106-118.
[15] 刘继雄, 马宏刚, 李巍, 等. 两相区变形温度对TC18钛合金组织转变规律影响[J]. 热加工工艺, 2015, 44(9): 59-61.
LIU Jixiong, MA Honggang, LI Wei, et al.Effect of deformation temperature of two-phase region on changing law of microstructure of TC18 titanium alloy[J]. Hot Working Technology, 2015, 44(9): 59-61.
[16] 卢金文, 赵永庆, 葛鹏, 等. Ti-Mo 系钛合金 β 晶粒长大规律及晶粒尺寸对硬度的影响[J]. 稀有金属材料与工程, 2013, 42(11): 2269-2273.
LU Jinwen, ZHAO Yongqing, GE Peng, et al.Growth behavior of β-phase grain and influence of its grain size on hardness in Ti-Mo alloys[J]. Rare Metal Materials and Engineering, 2013, 42(11): 2269-2273.
[17] CUI Y M, ZHENG W W, LI C H, et al.Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Rare Metals, 2021, 40(12): 3608-3615.
[18] LI Z S, GE J Y, KONG B, et al.Strain rate dependence and recrystallization modeling for TC18 alloy during post-deformation annealing[J]. Materials, 2023, 16(3): 1140.
[19] HE D G, LIN Y C, WANG L H.Microstructural variations and kinetic behaviors during metadynamic recrystallization in a nickel base superalloy with pre-precipitated δ phase[J]. Materials & Design, 2019, 165: 107584.
[20] 于永梅, 李文强, 李长生, 等. 粗晶硅钢热变形后静态再结晶及晶粒尺寸的演化模型研究[J]. 热加工工艺, 2019, 48(22): 42-47.
YU Yongmei, LI Wenqiang, LI Changsheng, et al.Study on evolution models of static recrystallization and grain size of coarse-grained silicon steel after hot deformation[J]. Hot Working Technology, 2019, 48(22): 42-47.
[21] 潘品李, 钟约先, 马庆贤, 等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报, 2011, 18(5): 13-18.
PAN Pinli, ZHONG Yuexian, MA Qingxian, et al.Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.
[22] ZHANG F, LIU D, YANG Y, et al.Investigation on the meta-dynamic recrystallization behavior of Inconel 718 superalloy in the presence of δ phase through a modified cellular automaton model[J]. Journal of Alloys and Compounds, 2020, 817: 152773.
[23] 周强, 程军, 于振涛, 等. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为研究[J]. 材料工程, 2019, 47(6): 121-128.
ZHOU Qiang, CHENG Jun, YU Zhentao, et al.Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy[J]. Journal of Materials Engineering, 2019, 47(6): 121-128.
[24] 庞铮, 赵春雷, 杜志伟, 等. LPSO相对Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=1, 1.5, 2)合金热压缩动态再结晶过程的影响[J]. 稀有金属, 2023, 47(8): 1059-1069.
PANG Zheng, ZHAO Chunlei, DU Zhiwei, et al.Dynamic recrystallization process of Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=1, 1.5, 2) alloy during hot compression with LPSO[J]. Chinese Journal of Rare Metals, 2023, 47(8): 1059-1069.
[25] 朱宁远, 赖文坤, 罗国虎, 等. Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的高温塑性变形行为及热加工图[J]. 塑性工程学报, 2023, 30(5): 96-104.
ZHU Ningyuan, LAI Wenkun, LUO Guohu, et al.High temperature plastic deformation behavior and hot processing map of Ti-6.5Al3.5Mo-1.5Zr-0.3Si alloy[J]. Journal of Plasticity Engineering, 2023, 30(5): 96-104.
[26] 田宁, 宋晓云, 叶文君, 等. SP700钛合金热变形行为及组织演变[J]. 工程科学学报, 2024, 46(4): 676-683.
TIAN Ning, SONG Xiaoyun, YE Wenjun, et al.Hot deformation behavior and microstructure evolution of SP700 titanium alloy[J]. Chinese Journal of Engineering, 2024, 46(4): 676-683.
[27] LIN Y C, HUANG J, HE D G, et al.Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression[J]. Journal of Alloys and Compounds, 2019, 795: 471-482.
[28] ZHU S, YANG H, GUO L G, et al.Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy[J]. Materials Characterization, 2012, 70: 101-110.
[29] CHENG J, DU Z X, ZHANG X Y, et al.Characterization of Ti-25.5Al-13.5Nb-2.8Mo-1.8Fe alloy hot deformation behavior through processing map[J]. Frontiers in Materials, 2020, 7: 23.
[30] 段静利. 热处理工艺和热变形参数对Ti-20Zr-6.5Al-4V合金组织与性能的影响[D]. 秦皇岛: 燕山大学, 2015.
DUAN Jingli.Effect of heat treatment and hot deformation parameters on microstructure and mechanical property of Ti-20Zr-6.5Al-4V alloy[D]. Qinhuangdao: Yanshan University, 2015.
[31] AHMED M, SAVVAKIN D G, IVASISHIN O M, et al.The effect of cooling rates on the microstructure and mechanical properties of thermo-mechanically processed Ti-Al-Mo-V-Cr-Fe alloys[J]. Materials Science and Engineering A, 2013, 576: 167-177.
[32] 李瑞锋, 张智鑫, 唐斌, 等. TC18钛合金大规格棒材热变形行为研究进展[J]. 铸造技术, 2024, 45(4): 316-327.
LI Ruifeng, ZHANG Zhixin, TANG Bin, et al.Research progress on the thermal deformation behavior of TC18 titanium alloy large-size bars[J]. Foundry Technology, 2024, 45(4): 316-327.
[33] 方浩煜, 伍秋美, 袁铁锤. 退火温度对粉末冶金 Ti-2Mn-2Sn-0.1B合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2024, 29(3): 246-254.
FANG Haoyu, WU Qiumei, YUAN Tiechui.Effects of annealing temperature on microstructure and mechanical properties of Ti-2Mn-2Sn-0.1B alloy by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(3): 246-254.
[34] 周晓光, 王铎, 马鑫, 等. ESP工艺条件下低碳钢奥氏体动态再结晶数学模型[J]. 钢铁研究学报, 2024, 36(1): 76-84.
ZHOU Xiaoguang, WANG Duo, MA Xin, et al.Mathematical model of dynamic recrystallization of austenite in low carbon steel under ESP process[J]. Journal of Iron and Steel Research, 2024, 36(1): 76-84.