[1] ZHOU C, YI J, LUO S.Sintering high tungsten content W-Ni-Fe heavy alloys by microwave radiation[J]. Metallurgical and Materials Transactions A, 2014, 45: 455-463.
[2] 周承商, 易健宏, 罗述东, 等. 微波烧结W-Ni-Fe高密度合金的变形现象及显微组织[J]. 粉末冶金材料科学与工程, 2010, 15(3): 300-304.
ZHOU Chengshang, YI Jianhong, LUO Shudong, et al.Distortion and microstructure of microwave sintered W-Ni-Fe heavy alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15(3): 300-304.
[3] 吕政, 任学平, 卢成壮. 动能穿甲弹用钨合金绝热剪切带的研究进展[J]. 兵器材料科学与工程, 2014, 37(6): 134-140.
LÜ Zheng, REN Xueping, LU Chengzhuang.Reasearch progress of adiabatic shear bands in tungsten heavy alloy for kinetic energy penetrators[J]. Ordnance Material Science and Engineering, 2014, 37(6): 134-140.
[4] LUO R, HUANG D, YANG M, et al.Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators[J]. Materials Science and Engineering A, 2016, 675: 262-270.
[5] 朱杰. 梯度结构钨基高密度合金的研究[D]. 长沙: 中南大学, 2013.
ZHU Jie, Research on gradient structured tungsten based high-density alloys[D]. Changsha: Central South University, 2013.
[6] BAEK W H, KIM E P, SONG H S, et al.Development of tungsten heavy alloy with hybrid structure for kinetic energy penetrator[C]//Materials Science Forum. Switzerland: Trans Tech Publications Ltd, 2007, 534: 1249-1252.
[7] GUO W Q, WANG Y C, LIU K Y, et al.Effect of copper content on the dynamic compressive properties of fine-grained tungsten copper alloys[J]. Materials Science and Engineering A, 2018, 727: 140-147.
[8] ZHANG Q, LIANG S, ZHUO L.Fabrication and properties of the W-30wt%Cu gradient composite with W@WC core-shell structure[J]. Journal of Alloys and Compounds, 2017, 708: 796-803.
[9] 王玲, 李树奎, 宋修纲. 高密度钨合金的表面渗碳处理研究[J]. 兵工学报, 2007, 28(6): 730-732.
WANG Ling, LI Shukui, SONG Xiugang.Research on surface carburization treatment of high density tungsten alloy[J]. Acta Armamentarii, 2007, 28(6): 730-732.
[10] JUNG S W, KIM D K, LEE S, et al.Effect of surface carburization on dynamic deformation and fracture of tungsten heavy alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(8): 2027-2035.
[11] ALAM M E, ODETTE G R.On the influence of specimen size and geometry on the fracture toughness of tungsten heavy metal alloys[J]. Journal of Nuclear Materials, 2022, 571: 154025.
[12] JETTER M, AKTAA J.Probabilistic analysis of cleavage fracture in commercial polycrystalline tungsten[J]. Journal of Nuclear Materials, 2022, 565: 153757.
[13] PAN Y, XIONG H, LI Z, et al.Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 127-136.
[14] HU K, WANG G H, LI X Q, et al.Microstructure and formation mechanism in a surface carburized tungsten heavy alloy[J]. Journal of Alloys and Compounds, 2019, 787: 560-569.
[15] WU H, CUI X, GENG L, et al.Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system[J]. Intermetallics, 2013, 43: 8-15.
[16] QIN Y, ZHUANG Y, WANG Y, et al.Enhanced mechanical and electrical properties of CuCrZr-WC alloy prepared by mechanical alloying and spark plasma sintering[J]. Fusion Engineering and Design, 2022, 180: 113166.
[17] JUNG S, LEE S, KIM E P, et al.Control of surface carburization and improvement of dynamic fracture behavior in tungsten heavy alloys[J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1213-1219.
[18] CETINKAYA S, EROGLU S.Thermodynamic analysis and effect of temperature on surface hardening of tungsten heavy alloys using ethanol[J]. Journal of Alloys and Compounds, 2015, 632: 161-164.
[19] WANG G, QU S, RUI L, et al.Effect of carburization on microstructure and rolling contact fatigue property of 95W-3.4Ni-1.6Fe heavy alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 12: 3161-3169.
[20] SONG Y, KIM J H, KIM K S, et al.Effect of C2H2/H2 Gas mixture ratio in direct low-temperature vacuum carburization[J]. Metals, 2018, 8(7): 493.
[21] 李佳, 闫晓东, 杨银, 等. Ta 及 Ta-W 合金真空渗碳工艺研究[J]. 稀有金属, 2018, 42(9): 925-930.
LI Jia, YAN Xiaodong, YANG Yin, et al.Research on vacuum carburization process of Ta and Ta-W alloy[J]. Chinese Journal of Rare Metals, 2018, 42(9): 925-930.
[22] ZHANG Q, YANG J Y, DENG N, et al.Effect of carburized time on microstructure and properties of WCu composites fabricated by vacuum pulse carburization[J]. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106168.
[23] 钟远辉. 钨铜合金材料的研究进展及应用[J]. 冶金与材料, 2023, 43(1): 151-153.
ZHONG Yuanhui.Research progress and application of tungsten copper alloy materials[J]. Metallurgy and Materials, 2023, 43(1): 151-153.
[24] WANG Y, ZHUO L, YIN E.Progress, challenges and potentials/trends of tungsten-copper (WCu) composites/pseudo-alloys: fabrication, regulation and application[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105648.
[25] 阙吴梅, 黄友庭, 陈文哲. 梯度结构铜钨基碳化物复合材料的制备及其高温压缩性能[J]. 机械工程材料, 2017, 41(7): 54-59.
QUE Wumei, HUANG Youting, CHEN Wenzhe.Preparation and high-temperature compression performance of gradient structured copper tungsten based carbide composite materials[J]. Mechanical Engineering Materials, 2017, 41(7): 54-59.
[26] DONG L L, AHANGARKANI M, ZHANG W, et al.Formation of gradient microstructure and mechanical properties of hot-pressed W-20 wt% Cu composites after sliding friction severe deformation[J]. Materials Characterization, 2018, 144: 325-335.
[27] ZHOU L, WANG H, LUO B, et al.Insight into the microstructure and tensile behavior of the W-Cu composite reinforced with tungsten fibers and particulates[J]. Advanced Engineering Materials, 2020, 22(11): 2000502.