[1] CHEN Y Y, HUANG Y, LI F, et al.High-strength diffusion bonding of oxide-dispersion-strengthened tungsten and CuCrZr alloy through surface nano-activation and Cu plating[J]. Journal of Materials Science & Technology, 2021, 92: 186-194.
[2] SEYEDHABASHI M M, TAFRESHI M A, BIDABADI B S, et al.Damage study of irradiated tungsten and copper using proton and argon ions of a plasma focus device[J]. Applied Radiation and Isotopes, 2019, 154: 108875.
[3] PAPADAKIS D, MERGIA K, MANIOS E, et al.Defect evolution of neutron irradiated ITER grade tungsten after annealing[J]. Fusion Engineering and Design, 2023, 189: 113486.
[4] YAO G, TAN X Y, FU M Q, et al.Isotropic thermal conductivity in rolled large-sized W-Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology[J]. Fusion Engineering and Design, 2018, 137: 325-330.
[5] HU W Q, MA Q S, MA Z Q, et al.Ultra-fine W-Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering[J]. Tungsten, 2019, 1(3): 220-228.
[6] 李月, 范红玉, 杨铭, 等. 低能氦离子辐照对钨和钼材料的表面损伤作用[J]. 核技术, 2015, 38(11): 13-18.
LI Yue, FAN Hongyu, YANG Ming, et al.Low-energy helium-ion irradiation on the surface damage of tungsten and molybdenum[J]. Nuclear Technique, 2015, 38(11): 13-18.
[7] 罗来马, 徐梦瑶, 昝祥, 等. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展[J]. 材料导报, 2018, 32(1): 41-46.
LUO Laima, XU Mengyao, ZHAN Xiang, et al.Progress in irradiation damage of tungsten and tungsten alloys under different irradiation partices[J]. Materials Reports, 2018, 32(1): 41-46.
[8] GARRISON L M, KATOH Y, SNEAD L L, et al.Irradiation effects in tungsten-copper laminate composite[J]. Journal of Nuclear Materials, 2016, 481: 134-146.
[9] 林泽华, 康俊, 周永贵, 等. 旋锻钨合金的残余应力及动态力学性能[J]. 粉末冶金材料科学与工程, 2021, 26(5): 404-411.
LIN Zehua, KANG Jun, ZHOU Yonggui, et al.Residual stress and dynamic mechanical properties of swaging deformed tungsten alloy[J] Materials Science and Engineering of Powder Metallurgy, 2021, 26(5): 404-411.
[10] BEYERLEIN I J, DEMKOWICZ M J, MISRA A, et al.Defect-interface interactions[J]. Progress in Materials Science, 2015, 74: 125-210.
[11] XIE Z M, LIU R, MIAO S, et al.Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3[J]. Journal of Nuclear Materials, 2015, 464: 193-199.
[12] LV Y Q, HAN Y, ZHAO S Q, et al.Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: microstructure, mechanical properties and high heat load performances[J]. Journal of Alloys and Compounds, 2021, 855: 157366.
[13] 陈勇, 吴玉程, 于福文, 等. La2O3弥散强化钨合金的组织性能研究[J]. 稀有金属材料与工程, 2007, 5(36): 822-824.
CHEN Yong, WU Yucheng, YU Fuwen, et al.Microstructure properties of La2O3 diffusion-strengthened tungsten alloy[J]. Rare Metal Materials and Engineering, 2007, 5(36): 822-824.
[14] WANG M, SUN H H, PANG B L, et al.Structure evolution of Y2O3 and consequent effects on mechanical properties of W-Y2O3 alloy prepared by ball milling and SPS[J]. Materials Science and Engineering A, 2022, 832: 142448.
[15] LIU R, WANG X P, HAO T, et al.Characterization of ODS-tungsten microwave-sintered from sol-gel prepared nano-powders[J]. Journal of Nuclear Materials, 2014, 450: 69-74.
[16] CHEN Z, QIN M L, YANG J J, et al.Effect of La2O3 addition on the synthesis of tungsten nanopowder via combustion-based method[J]. Journal of Materials Science and Technology, 2020, 58: 24-33.
[17] DONG Z, LIU N, MA Z Q, et al.Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 695: 2969-2973.
[18] 种法力, 陈俊凌, 李建刚. Tokamak 第一壁上 W/Cu 材料的连接和界面应力的研究[J]. 稀有金属与硬质合金, 2005, 33(4): 38-41.
CHONG Fali, CHEN Junling, LI Jiangang.Research on connection and interface thermal stress of W/Cu for plasma facing components of Tokamak unit[J]. Rare Metals and Cemented Carbides, 2005, 33(4): 38-41.
[19] TANABE T, WADA M, OHGO T, et al.Application of tungsten for plasma limiters in TEXTOR[J]. Journal of Nuclear Materials, 2000, 283: 1128-1133.
[20] KITSUNAI Y, KURISHITA H, KAYANO H, et al.Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC[J]. Journal of Nuclear Materials, 1999, 271: 423-428.
[21] XIE X F, JING K, XIE Z M, et al.Mechanical properties and microstructures of W-TiC and W-Y2O3 alloys fabricated by hot-pressing sintering[J]. Materials Science and Engineering A, 2021, 819: 141496.
[22] ANTOLAK-DUDKA A, OLESZAK D, ZIELINSKI R, et al.W-Y2O3 composites obtained by mechanical alloying and sintering[J]. Advanced Powder Technology, 2021, 32(2): 390-397.
[23] ZHAO M Y, ZHOU Z J, ZHONG M, et al.Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies[J]. Journal of Nuclear Materials, 2016, 470: 236-243.
[24] YAR M A, WAHLBERG S, BERGQVIS H, et al.Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma[J]. Journal of Nuclear Materials, 2011, 408(2): 129-135.
[25] YANG J J, CHEN G, CHEN Z, et al.Effects of doping route on microstructure and mechanical properties of W-1.0wt.%La2O3 alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3296-3306.
[26] YAO G, LIU X P, ZHAO Z H, et al.Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement[J]. Materials & Design, 2021, 212: 110249.
[27] LI Z, CHEN Y B, WEI S Z, et al.Effect of rotary swaging and subsequent annealing on microstructure and mechanical properties of W1.5ZrO2 alloys[J]. Journal of Alloys and Compounds, 2021, 875: 160041.
[28] LIU G, ZHANG G J, JIANG F, et al.Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350.
[29] 陈杉杉. 还原钨粉粒度特性的过程研究[J]. 粉末冶金材料科学与工程, 2020, 25(5): 389-395.
CHEN Shanshan.Process research on particle size characteristics of reduced tungsten powder[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(5): 389-395.
[30] ZHANG H, LI Z B, DENG X C, et al.Effects of various rare earth oxides on morphology and size of oxide dispersion strengthening (ODS)-W and ODS-Mo alloy powders[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(8): 2665-2680.
[31] AYYAPPARAJ M, YADAV D, AGRAWAL D K, et al.Microstructure and mechanical properties of spark plasma-sintered La2O3 dispersion-strengthened W-Ni-Fe alloy[J]. Rare Metals, 2021, 40(8): 2230-2236.
[32] FU B G, YANG J C, GAO Z K, et al.Hot pressing sintering process and sintering mechanism of W-La2O3-Y2O3-ZrO2[J]. Rare Metals, 2021, 40(7): 1949-1956.
[33] WEI Q, KECSKES L J.Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten[J]. Materials Science and Engineering A, 2008, 491(1/2): 62-69.
[34] 陈逊, 黄宇峰, 张磊, 等. 超高应变率变形下纯钨的断裂失效行为和动态再结晶[J]. 粉末冶金材料科学与工程, 2022, 27(5): 498-508.
CHEN Xun, HUANG Yufeng, ZHANG Lei, et al.Fracture failure behavior and dynamic recrystallization of pure tungsten under deformation at ultra-high strain rates[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 498-508.