[1] MA J W, LUO H, HU X J, et al.Electrochemical study on the effect of hydrogen on the passive film of selective laser melted 316L stainless steel in a proton exchange membrane water electrolyzer environment[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19396-19410.
[2] 黄天纵, 陈辉, 吴勇, 等. 质子交换膜燃料电池双极板的研究进展[J]. 材料保护, 2022, 55(3): 136-145.
HUANG Tianzong, CHEN Hui, WU Yong, et al.Research progress of bipolar plates in proten exchange membrane fuel cells[J]. Materials Protection, 2022, 55(3): 136-145.
[3] ZHANG B, MA X L.A review—pitting corrosion initiation investigated by TEM[J]. Journal of Materials Science & Technology, 2019, 35(7): 1455-1465.
[4] AYDOĞDU G H, AYDINOl M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel[J]. Corrosion Science, 2006, 48(11): 3565-3583.
[5] LUO H, ZOU S W, CHEN Y H, et al.Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corrosion Science, 2020, 163: 108287.
[6] DING F, FU A, WANG J, et al.Significant strength enhancement of FeCrNiMox medium-entropy alloys via hard intermetallic particles dispersion strengthening[J]. Materials Characterization, 2023, 200: 112877.
[7] XIE Z H, FU A, DUAN H, et al.Cryogenic mechanical behavior of a FeCrNi medium-entropy alloy fabricated by selected laser melting[J]. Intermetallics, 2023, 160: 107945.
[8] WANG S, ZHAO Y H, XU X T, et al.Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature[J]. Materials Chemistry and Physics, 2020, 244: 122700.
[9] HAN Z H, GUO Y A, YANG J, et al.Effect of Al addition on the corrosion behavior of the VCoNi medium-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 920: 165954.
[10] FU Y, LI J, LUO H, et al.Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 80: 217-233.
[11] FU A, LIU B, LU W J, et al.A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance[J]. Scripta Materialia, 2020, 186: 381-386.
[12] ZHOU Z Y, LIU B, GUO W M, et al.Corrosion behavior and mechanism of FeCrNi medium entropy alloy prepared by powder metallurgy[J]. Journal of Alloys and Compounds, 2021, 867: 159094.
[13] 蔡锋, 方铁辉. 晶粒尺寸梯度分布对316L不锈钢耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(3): 227-234.
CAI Feng, FANG Tiehui.Effect of gradient distribution of grain size on corrosion resistance of 316L stainless steel[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 227-234.
[14] PAN C, LIU L, LI Y, et al.The electrochemical corrosion behavior of nanocrystalline 304 stainless steel prepared by magnetron sputtering[J]. Journal of the Electrochemical Society, 2012, 159(11): C453-C460.
[15] LEISTIKOW S, WOLF I, GRBKE H J.Effects of cold work on the oxidation behavior and carburization resistance of alloy 800[J]. Materials and Corrosion, 1987, 38(10): 556-562.
[16] RAMAN R K S. Influence of microstructural variations in the weldment on the high-temperature corrosion of 2.25Cr-1Mo steel[J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1847-1858.
[17] GUPTA R K, BIRBILIS N.The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review[J]. Corrosion Science, 2015, 92: 1-15.
[18] ZHAI W Z, LI J J, ZHOU R H, et al.Improved corrosion resistance of nickel-aluminum bronze by electron beam powder bed fusion[J]. Materials Chemistry and Physics, 2023, 296: 127225.
[19] BOMMERSBACH P, ALEMANY-DUMONT C, MILLET J P, et al.Formation and behaviour study of an environment- friendly corrosion inhibitor by electrochemical methods[J]. Electrochimica Acta, 2005, 51(6): 1076-1084.
[20] LUO H, LI Z, MINGERS A M, et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corrosion Science, 2018, 134: 131-139.
[21] HAN Z H, REN W N, YANG J, et al.The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys[J]. Journal of Alloys and Compounds, 2020, 816: 152583.
[22] FENG K, ZHANG Y, LI Z G, et al.Corrosion properties of laser cladded CrCoNi medium entropy alloy coating[J]. Surface and Coatings Technology, 2020, 397: 126004.
[23] SHUANG S, DING Z Y, CHUNG D, et al.Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corrosion Science, 2020, 164: 108315.
[24] SHANG X L, WANG Z J, HE F, et al.The intrinsic mechanism of corrosion resistance for FCC high entropy alloys[J]. Science China Technological Sciences, 2018, 61: 189-196.
[25] GARDIN E, ZANNA S, SEYEUX A, et al.Comparative study of the surface oxide films on lean duplex and corresponding single phase stainless steels by XPS and ToF-SIMS[J]. Corrosion Science, 2018, 143: 403-413.
[26] TAYLOR C D, LI S, SAMIN A J.Oxidation versus salt-film formation: competitive adsorption on a series of metals from first-principles[J]. Electrochimica Acta, 2018, 269: 93-101.
[27] HUANG J B, WU X Q, HAN E H.Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments[J]. Corrosion Science, 2010, 52(10): 3444-3452.
[28] GOLLAPUDI S.Grain size distribution effects on the corrosion behaviour of materials[J]. Corrosion Science, 2012, 62: 90-94.
[29] PHANIRAJ M P, PRASAD M J N V, CHOKSHI A H. Grain-size distribution effects in plastic flow and failure[J]. Materials Science and Engineering A, 2007, 463(1/2): 231-237.
[30] ZHU B, ASARO R J, KRYSL P, et al.Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals[J]. Acta Materialia, 2005, 53(18): 4825-4838.
[31] RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12): 1201-1204.
[32] LIU Q, WANG G F, SUI X C, et al.Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. Journal of Materials Science & Technology, 2019, 35(11): 2600-2607.