[1] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933.
HUANG Boyun, WEI Weifeng, LI Songlin, et al.Advances in modern powder metallurgical materials and technologies[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933.
[2] 徐峰, 冯小明, 王永善. 铁基粉末冶金摩擦材料的研制[J]. 热加工工艺, 2017, 46(14): 110-111, 115.
XU Feng, FENG Xiaoming, WANG Yongshan.Research on iron based powder metalurgy frictional materals[J]. Hot Working Technology, 2017, 46(14): 110-111, 115.
[3] CHEN H, LUO P, YANG Y, et al.Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloy steel[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4481-4490.
[4] 杨廷志. 现代粉末冶金材料与技术进展[J]. 中国金属通报, 2019(12): 10-11.
YANG Tingzhi.Advances in modern powder metallurgical materials and technologies[J]. China Metal Bulletin, 2019(12): 10-11.
[5] SHUI Y, FENG K, ZHANG Y, et al.Influence of Mn on the iron-based friction material directly prepared by in situ carbothermic reaction from vanadium-bearing titanomagnetite concentrates[J]. RSC Advances, 2018, 8(64): 36503-36511.
[6] FANG H, XIA L, YU Q, et al.Research on properties and growth kinetics of boride layer of Fe-based powder metallurgy material boriding strengthened with rare earth[J]. Integrated Ferroelectrics, 2022, 226(1): 1-14.
[7] 方振东. 热处理工艺与合金化对铁基粉末冶金材料组织与力学性能的影响[D]. 南京: 南京航空航天大学, 2020.
FANG Zhendong.Effects of heat treatment process and alloying on microstructure and mechanical properties of Fe-based powder metallurgy materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[8] 何勤求, 李普明, 袁勇, 等. 陶瓷颗粒增强粉末冶金Fe- 2Cu-0.6C复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2019, 37(1): 11-17, 22.
HE Qinqiu, LI Puming, YUAN Yong, et al.Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22.
[9] 徐建新, 姚雨, 姜鑫. 石墨烯增强铁基复合材料制备工艺及其性能的研究[J]. 机械制造与自动化, 2018, 47(4): 53-57.
XU Jianxin, YAO Yu, JIANG Xin.Research on preparation process and performance of graphene reinforced iron matrix composites[J]. Machine Manufacturing and Automation, 2018, 47(4): 53-57.
[10] LIU X, XIAO Z, GUAN H, et al.Friction and wear behaviours of surface densified powder metallurgy Fe-2Cu-0.6C material[J]. Powder Metallurgy, 2016, 59(5): 329-334.
[11] 张忠义. 制备工艺对铁基粉末冶金航空刹车材料组织与性能的影响[D]. 长沙: 中南大学, 2007.
ZHANG Zhongyi.Influence of preparation process on the organization and properties of iron-based powder metallurgy aviation brake materials[D]. Changsha: Central South University, 2007.
[12] 刘东华, 钱晓泰. 汽车铁基粉末冶金零件新进展[J]. 金属材料与冶金工程, 2013, 41(4): 52-56.
LIU Donghua, QIAN Xiaotai.New progress of automobile iron-based powder metallurgy parts[J]. Metal Materials and Metallurgical Engineering, 2013, 41(4): 52-56.
[13] AKHTAR S, SAAD M, MISBAH R M, et al.Recent advancements in powder metallurgy: a review[J]. Materials Today: Proceedings, 2018, 5(9): 18649-18655.
[14] KANDAVEL T K, CHANDRAMOULI R, SHANMUGASUNDARAM D.Experimental study of the plastic deformation and densification behaviour of some sintered low alloy P/M steels[J]. Materials & Design, 2009, 30(5): 1768-1776.
[15] MADAN D S, GERMAN R M.Quantitative assessment of enhanced sintering concepts[J]. Powder Metallurgy, 1990, 33(1): 45-52.
[16] BARLA N A.Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C[C]// IOP Conference Series. Materials Science and Engineering. UN: IOP Publishing, 2018.
[17] 党文龙, 刘祥庆, 汪礼敏, 等. 碳含量对Fe-Cu-C 扩散预合金粉末烧结性能的影响[J]. 粉末冶金技术, 2013, 31(2): 83-88.
DANG Wenlong, LIU Xiangqing, WANG Limin, et al.Influence of carbon content on the properties of diffusion alloyed Fe-Cu-C sintered materials[J]. Powder Metallurgy Technology, 2013, 31(2): 83-88.
[18] 黄晓星, 刘祥庆, 杨中元, 等. 含铜铁基粉末冶金零件烧结性能的研究进展[J]. 粉末冶金技术, 2015, 33(2): 133-139.
HUANG Xiaoxing, LIU Xiangqing, YANG Zhongyuan, et al.Research progress on the sintering properties of copper- containing iron-based powder metallurgy parts[J]. Powder Metallurgy Technology, 2015, 33(2): 133-139.
[19] 岳慧芳, 冯可芹, 李莹, 等. 石墨对钒钛铁精矿原位制备铁基摩擦材料的影响[J]. 材料热处理学报, 2015, 36(10): 16-21.
YUE Huifang, FENG Keqin, LI Ying, et al.Effect of graphite content on Fe-based friction material prepared by in-situ carbothermic reduction and synthesis from vanadium and titanium iron concentrate[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 16-21.
[20] GARBADE R R, DHOKEY N B.Effect of mechanical alloying of Ti and B in pre alloyed gas atomized powder on carbide dispersed austenitic matrix of Iron based hardfacing alloy[J]. Materials Characterization, 2022, 191: 112134.
[21] 王行, 李松林, 彭家科, 等. 不同黏结剂对Fe-2Cu-0.8C预混合钢粉性能的影响[J]. 有色金属科学与工程, 2014, 5(1): 14-19.
WANG Xing, LI Songlin, PENG Jiake, et al.Effect of different binders on properties of Fe-2Cu-0.8C premix steel powder[J]. Nonferrous Metal Science and Engineering, 2014, 5(1): 14-19.
[22] CHEN H Z, LUO P, YANG Y J, et al.Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloyed steel[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4481-4490.
[23] LIANG X, JI H.Reliability of friction and wear characteristics of surface-strengthened iron-based powder metallurgy materials[J]. Integrated Ferroelectrics, 2022, 229(1): 190-209.
[24] 刘双宇. 高强度铁基粉末冶金材料复合制备方法及组织性能研究[D]. 吉林: 吉林大学, 2007.
LIU Shuangyu.Research on composite processing methods and their microstructure and properties of the high strength Fe-based PIM materials[D]. Jilin: Jilin University, 2007.
[25] 韩凤麟. 粉末冶金零件生产用石墨粉的选择[J]. 粉末冶金工业, 2014, 24(4): 1-10.
HAN Fenglin.Selection of graphite powder used in powder metallurgy parts production[J]. Powder Metallurgy Industry, 2014, 24(4): 1-10.
[26] LONG A P, LI S L, WANG H, et al.Characterization of oxide on the water-atomized FeMn powder surface[J]. Applied Surface Science, 2014, 295(3): 180-188.
[27] 周科朝. 高性能铁基粉末冶金材料及制备技术的现状与发展趋势[C]// 中国工程院. 中国工程科技论坛第151场——粉末冶金科学与技术发展前沿论坛论文集. 长沙: 中国工程院, 2012: 25-41.
ZHOU Kezhao.Current status and perspective of high performance iron-based powder metallurgy materials and technologies[C]// Chinese Academy of Engineering Proceeding of the 151st Session of China Engineering Science and Technology Forum——Frontiers of Powder Metallurgy Science and Technology Development. Changsha: Chinese Academy of Engineering, 2012: 25-41.
[28] 朱佳敏, 陈卓, 方华婵, 等. 短碳纤维/铜复合材料的制备及其组织和性能[J]. 中国有色金属学报, 2020, 30(12): 2875-2885.
ZHU Jiamin, CHEN Zhuo, FANG Huachan, et al.Preparation of short carbon fibers/copper composites and their organization and properties[J]. Chinese Journal of Nonferrous Metals, 2020, 30(12): 2875-2885.
[29] 李玲, 陈卓, 方华婵, 等. 微米级短碳纤维/铜基复合材料组织和摩擦性能研究[J]. 材料科学与工艺, 2021, 29(5): 48-56.
LI Ling, CHEN Zhuo, FANG Huachan, et al.Study on the organization and friction properties of micron-scale short carbon fibers/copper matrix composites[J]. Materials Science and Technology, 2021, 29(5): 48-56.
[30] CHEN Z, FANG H C, ZHU J M, et al.Effect of carbon type and morphology on the microstructure and properties of carbon/copper composites[J]. Wear, 2020, 460: 203473.
[31] 冯志海, 李同起, 杨云华, 等. 碳纤维在高温下的结构、性能演变研究[J]. 中国材料进展, 2012, 31(8): 7-14, 32.
FENG Zhihai, LI Tongqi, YANG Yunhua, et al.Evolution of the structure and performance of carbon fiberss at high temperatures[J]. Materials China, 2012, 31(8): 7-14, 32.
[32] 操龙飞. 金属材料的热膨胀特性研究[D]. 武汉: 武汉科技大学, 2013.
CAO Longfei.Study on thermal expansion properties of steels[D]. Wuhan: Wuhan University of Science and Technology, 2013.
[33] 彭元东, 吴海明, 易健宏, 等. C含量对 Fe-Cu-C 合金性能的影响[J]. 金属材料与冶金工程, 2007(6): 15-18.
PENG Yuandong, WU Haiming, YI Jianhong, et al.Effect of C content on the properties of Fe-Cu-C alloy[J]. Metal Materials and Metallurgical Engineering, 2007(6): 15-18.
[34] 陈荟竹, 李松林, 王行, 等. 少量Mo添加对Fe-0.5Mn- 0.5C烧结钢组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(5): 784-789.
CHEN Huizhu, LI Songlin, WANG Xing, et al.Effect of small amount of Mo addition on the organization and mechanical properties of Fe-0.5Mn-0.5C sintered steels[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5): 784-789.