[1] ANVARI A.Failure of Nickel-based super alloy (ME3) in aerospace gas turbine engines[J]. Journal of Chemical Engineering and Materials Science, 2017, 8(6): 46-65.
[2] CARTER J L W, KUPER M W, UCHIC M D, et al. Characterization of localized deformation near grain boundaries of superalloy René-104 at elevated temperature[J]. Materials Science and Engineering A, 2014, 605: 127-136.
[3] 贾建, 陶宇, 张义文, 等. 第三代粉末冶金高温合金René104的研究进展[J]. 粉末冶金工业, 2007, 17(3): 36-43.
JIA Jian, TAO Yu, ZHANG Yiwen, et al.Rencent devlopment of third generation P/M superalloy René104[J]. Powder Metallurgy Technology, 2007, 17(3): 36-43.
[4] TOMUS D, TIAN Y, ROMETSCH P A, et al.Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Science and Engineering A, 2016, 667: 42-53.
[5] WANG H, ZHANG X, WANG G B, et al.Selective laser melting of the hard-to-weld IN738LC superalloy: efforts to mitigate defects and the resultant microstructural and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 807: 151662.
[6] NADAMMAL N, CABEZA S, MISHUROVA T, et al.Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718[J]. Materials & Design, 2017, 134: 139-150.
[7] NGUEJIO J, SZMYTKA F, HALLAIS S, et al.Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625[J]. Materials Science and Engineering A, 2019, 764: 138214
[8] YANG J, LI F, WANG Z, et al.Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication[J]. Journal of Materials Processing Technology, 2015, 225: 229-239.
[9] PENG K, DUAN R X, LIU Z M, et al.Cracking behavior of René 104 nickel-based superalloy prepared by selective laser melting using different scanning strategies[J]. Materials, 2020, 13(9): 2149.
[10] YING W, HAN F, WANG J.Effects of preheating and cooling on the crack defects of laser solid formed Rene 104 superalloy parts[J]. Journal of Engineering Manufacture, 2020, 234(8): 1087-1101.
[11] 段然曦, 黄伯云, 刘祖铭, 等. René104镍基高温合金选区激光熔化成形及开裂行为[J]. 中国有色金属学报, 2018. 28(8): 1568-1578.
DUAN Ranxi, HUANG Baiyun, LIU Zuming, et al.Selective laser melting fabrication and cracking behavior of René104 nickel-based superalloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(8): 1568-1578.
[12] GERSTGRASSER M, CLOOTS M, STIRNIMANN J, et al.Focus shift analysis, to manufacture dense and crack-free SLM-processed CM247LC samples[J]. Journal of Materials Processing Technology, 2020, 289: 116948.
[13] QIU C, WANG Z, ALADAWI A S, et al.Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material[J]. Metallurgical and Materials Transactions A, 2019, 50(9): 4423-4434.
[14] SENTYURINA Z A, BASKOV F A, LOGINOV P A, et al.The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion[J]. Additive Manufacturing, 2020, 37: 101629.
[15] HARRISON N J, TODD I, MUMTAZ K.Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach[J]. Acta Materialia, 2015, 94: 59-68.
[16] KONTIS P, CHAUVET E, PENG Z, et al.Atomic-scale grain boundary engineering to overcome hot-cracking in additively- manufactured superalloys[J]. Acta Materialia, 2019, 177: 209-221.
[17] 彭凯. René104镍基高温合金的选区激光熔化成形及缺陷研究[D]. 长沙: 中南大学, 2019.
PENG Kai.Selective laser melting fabrication and defect control of René104 nickel-based superalloy[D]. Changsha: Central South University, 2019.
[18] ZHOU W, ZHU G, WANG R, et al.Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion[J]. Materials Science and Engineering A, 2020, 791: 139745.
[19] HAN Q, GU Y, GU H, et al.Laser powder bed fusion of WC-reinforced Hastelloy-X composite: microstructure and mechanical properties[J]. Journal of Materials Science, 2021, 56(2): 1768-1782.
[20] WEI B, LIU Z, CAO B, et al.Cracking inhibition of nano-TiC reinforced René 104 superalloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 881: 160413.
[21] GHOUSSOUB J N, KLUPŚ P, DICK-CLELAND W J B, et al. A new class of alumina-forming superalloy for 3D printing[J]. Additive Manufacturing, 2022, 52: 102608.
[22] 农必重. 选区激光熔融制备René104镍基高温合金裂纹形成机理及其控制[D]. 长沙: 中南大学, 2021.
NONG Bizhong.Crack formation mechanism and control of René104 nickel-base superalloy fabricated by selective laser melting[D]. Changsha: Central South University, 2021.
[23] BIAN W, ZHANG H, ZHANG X, et al.Comprehensive influence of Y on K417 superalloy: purification, interactions among the alloy elements and high temperature properties[J]. Materials Science and Engineering A, 2019, 755: 190-200.
[24] KANG D S, KOIZUMI Y, YAMANAKA K, et al.Significant impact of yttrium microaddition on high temperature tensile properties of Inconel 713C superalloy[J]. Materials Letters, 2018, 227: 40-43.
[25] KAKEHI K, BANOTH S, KUO Y L, et al.Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting[J]. Scripta Materialia, 2020, 183: 71-74.
[26] GUAN K, HUANG Z, CUI R, et al.Effects of yttrium on microstructure and mechanical properties of a directionally solidified single crystal superalloy[J]. Materials Science and Engineering A, 2019, 752: 86-92.
[27] PAN X L, YU H Y, TU G F, et al.Effect of rare earth metals on solidification behaviour in nickel based superalloy[J]. Materials Science and Technology, 2013, 28(5): 560-564.
[28] 金玉花, 韩萍花, 李常锋, 等. 稀土Y,Ce对K418镍基高温合金微观组织的影响[J]. 材料工程, 2016, 44(3): 46-51.
JIN Yuhua, HAN Pinghua, LI Changfeng, et al.Effect of rare earth element (Y, Ce) on microstructure of K418 Ni-base superalloy[J]. Journal of Materials Engineering, 2016, 44(3): 46-51.
[29] WEI B, LIU Z M, CAO B, et al.Selective laser melting of crack-free René 104 superalloy by Sc microalloying[J]. Journal of Alloys and Compounds, 2022, 895: 162663.
[30] BRIKA S E, LETENNEUR M, DION C A, et al.Influence of particle morphology and size distribution on the powder flow ability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy[J]. Additive Manufacturing, 2020, 31: 100929.
[31] 李响, 曾克里, 何鹏江, 等. 雾化压力对选区激光熔化用Inconel 625合金粉末粒度与形貌的影响[J]. 粉末冶金材料科学与工程, 2019, 24(4): 374-378.
LI Xiang, ZENG Keli, HE Pengjiang, et al.Effect of atomization pressure on particle size and morphology of Inconel 625 alloy powder for selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 374-378.
[32] 段然曦. 选区激光熔化成形René104镍基高温合金的组织及力学性能研究[D]. 长沙: 中南大学, 2017.
DUAN Ranxi.The microstructure and mechanical properties of René104 nickel-based superalloy fabricated by selective laser melting[D]. Changsha: Central South University, 2017.
[33] WEI B, CAO B, LIU Z M, et al.Additive manufacturing of Sc microalloyed René 104 superalloy: powder properties and cracking elimination[J]. Advanced Powder Technology, 2022, 33(2): 103430.
[34] 苏鹏飞, 刘祖铭, 郭旸, 等. 氩气雾化René104镍基高温合金粉末的显微组织和凝固缺陷[J]. 中南大学学报(自然科学版), 2018, 49(1): 64-71.
SU Pengfei, LIU Zuming, GUO Yang, et al.Microstructure and solidification defect of René104 nickel-based superalloy powder atomized by argon gas atomization[J]. Journal of Central South University (Nature Science Edition), 2018, 49(1): 64-71.
[35] GHAYOOR M, LEE K, HE Y, et al.Selective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical properties[J]. Additive Manufacturing, 2020, 32: 101011.
[36] 许阳, 张荣, 肖志瑜. Inconel 718合金粉末粒形定量表征及其SLM成形工艺优化[J]. 粉末冶金材料科学与工程, 2020, 25(6): 465-474.
XU Yang, ZHANG Rong, XIAO Zhiyu, et al.Quantitative characterization of Inconel 718 alloy powder particle shape and optimization of its SLM forming process[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 374-378.
[37] YAN F, XIONG W, FAIERSON E.Grain structure control of additively manufactured metallic materials[J]. Materials, 2017, 10(11): 1260.
[38] BERMINGHAM M J, STJOHN D H, KRYNEN J, et al.Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261-274.
[39] GUIMARÃES A V, DA SILVEIRA R M S, DE ALMEIDA L H, et al. Influence of yttrium addition on the microstructural evolution and mechanical properties of superalloy 718[J]. Materials Science and Engineering A, 2020, 776: 139023.
[40] DENG R, LIU F, TAN L, et al.Effects of scandium on microstructure and mechanical properties of RR1000[J]. Journal of Alloys and Compounds, 2019, 785: 634-641.
[41] BONACHE V, RAYÓN E, SALVADOR M D, et al. Nanoindentation study of WC-12Co hardmetals obtained from nanocrystalline powders: evaluation of hardness and modulus on individual phases[J]. Materials Science and Engineering A, 2010, 527(12): 2935-2941.
[42] 中国国家标准化管理委员会. 金属材料硬度和材料参数的仪器化压入试验第1部分: 试验方法GB/T 21838.1—2019[S]. 北京: 中国标准出版社, 2019-08-30.
Standardization Administration of the People’s Republic of China. Metallic materials— instrumented indentation test for hardness and materials parameter: part 1 Test method: GB/T 21838.1—2019[S]. Beijing: Standards Press of China, 2019-08-30.