[1] 陈颢, 羊建高. 等离子束表面冶金强化硬面涂层[M]. 北京: 冶金工业出版社, 2017: 79.
CHEN Hao, YANG Jiangao.Plasma Beam Surface Metallurgically Strengthened Hard Surface Coating[M]. Beijing: Metallurgical Industry Press, 2017: 79.
[2] 李玉玺, 周伍喜. 钨基硬面技术的现状及发展[J]. 硬质合金, 2012, 29(5): 323-328.
LI Yuxi, ZHOU Wuxi.Current status and development of tungsten based hardfacing technology[J]. Hard Metals, 2012, 29(5): 323-328.
[3] MA Q, LU B W, ZHANG Y M, et al.Crack-free 60wt%WC reinforced FeCoNiCr high-entropy alloy composite coating fabricated by laser cladding[J]. Materials Letters, 2022, 324: 132667.
[4] OSTOVARI M A, SHABUROVA N A, SAMODUROVA M N, et al.Additive manufacturing of high entropy alloys: a practical review[J]. Journal of Materials Science & Technology, 2021, 77(18): 131-162.
[5] CANTOR B, CHANG I T, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375/377: 213-218.
[6] 刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 9(16): 2186-2184.
LIU Yong, CAO Yuankui, WU Wenqian, et al.Research progress in powder metallurgy high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 9(16): 2184-2186.
[7] QIAN C, LIU Y, CHENG H C, et al.Effect of the carbon content on the morphology evolution of the η phase in cemented carbides with the CoNiFeCr high entropy alloy binder[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105731.
[8] LUO W Y, LIU Y Z, SHEN J J.Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%AlxCoCrCuFeNi composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 791: 540-549.
[9] LUO W Y, LIU Y Z, LUO Y, et al.Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2018, 754: 163-170.
[10] LUO W Y, LIU Y Z, TU C.Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate[J]. Journal of Materials Science & Technology, 2021, 78: 192-201.
[11] GAO Y, LUO B H, HE K J, et al.Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides[J]. Ceramics International, 2018, 44(2): 2030-2041.
[12] CHANG S H, CHANG M H, HUANG K T.Study on the sintered characteristics and properties of nanostructured WC-15wt% (Fe-Ni-Co) and WC-15wt% Co hard metal alloys[J]. Journal of Alloys and Compounds, 2015, 649: 89-95.
[13] PENG Y B, ZHANG W, LI T C, et al.Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology, 2020, 385: 125326.
[14] PENG Y B, ZHANG W, LI T C, et al.Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105044.
[15] XIE Z X, ZHANG C, WANG R D, et al.Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding[J]. Journal of Materials Research and Technology, 2021, 15: 821-833.
[16] WANG X Y, ZHOU S F, DAI X Q, et al.Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 234-241.
[17] SUNDARAMOORTHY R, TONG S X, PAREKH D, et al. Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding[J]. Wear, 2017, 376/377: 1720-1727.
[18] LI J F, ZHU Z C, PENG Y X, et al.Phase evolution and wear resistance of in-situ synthesized (Cr,W) 23C6-WC composite ceramics reinforced Fe-based composite coatings produced by laser cladding[J]. Vacuum, 2021, 190: 110242.
[19] NURMINEN J, NÄKKI J, VUORISTO P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 472-478.
[20] ZHAO S B, XU S, YANG L J, et al.WC-Fe metal-matrix composite coatings fabricated by laser wire cladding[J]. Journal of Materials Processing Technology, 2022, 301: 117438.
[21] 魏莹. 等离子转移弧堆焊镍基合金/碳化钨复合材料的制备工艺与性能表征[D]. 上海: 同济大学, 2018.
WEI Ying.Preparation and characterization of Ni base alloy/tungsten carbide composites by plasma transfer arc surfacing[D]. Shanghai: Tongji University, 2018.
[22] WANG G Y, ZHANG J Z, SHU R Y, et al.High temperature wear resistance and thermal fatigue behavior of Stellite- 6/WC coatings produced by laser cladding with Co-coated WC powder[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 63-70.
[23] 蓝阳, 马青原, 杨紫涵, 等. 激光熔覆法制备WC-Co球粒强化高熵合金复合硬质涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2022, 27(5): 532-541.
LAN Yang, MA Qingyuan, YANG Zihan, et al.Microstructure and properties of WC-Co pellet-strengthened high entropy alloy composite hard coatings prepared by laser cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 532-541.
[24] DUAN H, LIU B, FU A, et al.Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting[J]. Journal of Materials Science & Technology, 2022, 99: 207-214.
[25] 曾晓雁, 吴新伟, 陶曾毅, 等. 激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评估[J]. 金属学报, 1997, 33(8): 863-868.
ZENG Xiaoyan, WU Xinwei, TAO Zengyi, et al.Burning mechanism and evaluation of WC particles in laser cladding cast WC-Ni alloy[J]. Acta Metallurgica Sinica, 1997, 33(8): 863-868.
[26] LIU D J, LI L Q, LI F Q, et al.WCp/Fe metal matrix composites produced by laser melt injection[J]. Surface and Coatings Technology, 2008, 202(9): 1771-1777.
[27] RIABKINA-FISHMAN M, RABKIN E, LEVIN P, et al.Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel[J]. Materials Science and Engineering A, 2001, 302(1): 106-114.
[28] ZHAO S B, YANG L J, HUANG Y M, et al.Enrichment of in-situ synthesized WC by partial dissolution of ex-situ eutectoid-structured WC/W2C particle in the coatings produced by laser hot-wire deposition[J]. Materials Letters, 2020, 281: 128641.
[29] SOLODKYI I, TESLIA S, BEZDOROZHEV O, et al.Hardmetals prepared from WC-W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder[J]. Vacuum, 2022, 195: 110630.
[30] GUNTHER K, BERGMANN J P.Understanding the dissolution mechanism of fused tungsten carbides in Ni-based alloys: an experimental approach[J]. Materials Letters, 2018, 213: 253-256.
[31] WANG H R, SUN Y F, QIAO Y Z, et al.Effect of Ni-coated WC reinforced particles on microstructure and mechanical properties of laser cladding Fe-Co duplex coating[J]. Optics & Laser Technology, 2021, 142: 107209.
[32] CIURANS-OSET M, MOUZON J, AKHTAR F.Use of AFM topography images to determine microindentation hardness of cast tungsten carbide powders[J]. International Journal of Refractory Metals & Hard Materials, 2022, 107: 105878.
[33] SHAO W, ZHOU Y F, ZHOU L, et al.Effect of Ti-doping on peeling resistance of primary M7C3 carbides in hypereutectic Fe-Cr-C hardfacing coating and gamma-Fe/ M(7)C9(3) interfacial bonding strength[J]. Materials & Design, 2021, 211: 2110133.
[34] YUAN Y L, WU H H, YOU M, et al.Improving wear resistance and friction stability of FeNi matrix coating by in-situ multi-carbide WC-TiC via PTA metallurgical reaction[J]. Surface and Coatings Technology, 2019, 378: 124957.