[1] 赵瑶, 贺跃辉, 江垚. 粉末冶金Ti6Al4V合金的研制进展[J]. 粉末冶金材料科学与工程, 2008, 13(2): 70-78.
ZHAO Yao, HE Yuehui, JIANG Yao.Development of powder metallurgy Ti6Al4V alloy[J]. Powder Metallurgy Materials Science and Engineering, 2008, 13(2): 70-78.
[2] 张拓阳, 刘咏, 刘彬, 等. 细晶Ti-6Al-4V合金的超塑性变形行为与组织演变[J]. 粉末冶金材料科学与工程, 2014, 19(2): 184-190.
ZHANG Tuoyang, LIU Yong, LIU Bin, et al.Superplastic deformation behavior and microstructure evolution of fine-grained Ti-6Al-4V alloy[J]. Powder Metallurgy Materials Science and Engineering, 2014, 19(2): 184-190.
[3] 王亮, 史鸿培. 高性能钛合金粉末冶金技术研究[J]. 宇航材料工艺, 2003, 33(3): 42-44.
WANG Liang, SHI Hongpei.Research on high performance titanium alloy powder metallurgy technology[J]. Aerospace Materials Technology, 2003, 33(3): 42-44.
[4] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(2): 280-292.
JIN Hexi, WEI Kexiang, LI Jianming, et al.Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
[5] BOYER R R.An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213(1): 103-114.
[6] FROES F H, EYLON D.Powder Metallurgy of Titanium Alloys[M]. US: Melallurgical of AIME, 1980.
[7] FANG Z Z, PARAMORE J D, SUN P, et al.Powder metallurgy of titanium-past, present, and future[J]. International Materials Reviews, 2017, 63(7): 407-459.
[8] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933.
HUANG Boyun, WEI Weifeng, LI Songlin, et al.Progress in modern powder metallurgy materials and technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933.
[9] 冯新, 马英杰, 李建崇, 等. 铸造、锻造和粉末冶金TC4钛合金损伤容限行为对比研究[J]. 精密成形工程, 2018, 10(3): 46-54.
FENG Xin, MA Yingjie, LI Jianchong, et al.Comparative study on damage tolerance behavior of casting, forging and powder metallurgy TC4 titanium alloy[J]. Precision Forming Engineering, 2018, 10(3): 46-54.
[10] 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金钛合金致密化研究的进展[J]. 稀有金属材料与工程, 2003, 32(9): 677-680.
TANG Huiping, HUANG Boyun, LIU Yong, et al.Research progress in the densification of powder metallurgy titanium alloys[J]. Rare Metal Materials and Engineering, 2003, 32(9): 677-680.
[11] 阴中炜, 孙彦波, 张绪虎, 等. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 24-33.
YIN Zhongwei, SUN Yanbo, ZHANG Xuhu, et al.Hot isostatic pressing near-net forming technology and development status of powder titanium alloy[J]. Materials Review, 2019, 33(7): 24-33.
[12] CAO F, CHANDRAN K R.Fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy: a critical analysis of current fatigue data and metallurgical approaches for improving fatigue strength[J]. Journal of the Minerals Metals and Materials Society, 2016, 68(3): 1-12.
[13] 张殿喜, 周士芸, 张在玉, 等. HIP技术在改善铸件致密化方面的应用[J]. 粉末冶金工业, 2015, 25(1): 46-48.
ZHANG Dianxi, ZHOU Shiyun, ZHANG Zaiyu, et al.Application of HIP technology in improving the densification of castings[J]. Powder Metallurgy Industry, 2015, 25(1): 46-48.
[14] 刘慧渊, 何如松, 周武平, 等. 热等静压技术的发展与应用[J]. 新材料产业, 2010, 11(11): 12-12.
LIU Huiyuan, HE Rusong, ZHOU Wuping, et al.Development and application of hot isostatic pressing technology[J]. New Material Industry, 2010, 11(11): 12-12.
[15] SAN-MARTIN A S, MANCHESTER F D. The H-Ti (Hydrogen- Titanium) system[J]. Bulletin of Alloy Phase Diagrams, 1987, 8(1): 30-42.
[16] SENKOV O N, CHAKOUMAKOS B C, JONAS J J, et al.Effect of temperature and hydrogen concentration on the lattice parameter of beta titanium[J]. Materials Research Bulletin, 2001, 36(7/8): 1431-1440.
[17] 韩明臣. 钛合金的热氢处理[J]. 宇航材料工艺, 1999, 29(1): 23-27, 50.
HAN Mingchen.Thermal hydrogen treatment of titanium alloy[J]. Aerospace Materials Technology, 1999, 29(1): 23-27, 50.
[18] SENKOV O N, FROES F H.Thermohydrogen processing of titanium alloys[J]. International Journal of Hydrogen Energy, 1999, 24(6): 565-576.
[19] ELIEZER D, ELIAZ N, SENKOV O N, et al.Positive effects of hydrogen in metals[J]. Materials Science Engineering A, 2000, 280(1): 220-224.
[20] 侯红亮, 李志强, 王亚军, 等. 钛合金热氢处理技术及其应用前景[J]. 中国有色金属学报, 2003, 13(3): 533-549.
HOU Hongliang, LI Zhiqiang, WANG Yajun, et al.Titanium alloy thermal hydrogen treatment technology and its application prospects[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(3): 533-549.
[21] 张鹏省, 赵永庆, 毛小南, 等. 热氢处理对Ti600钛合金组织和性能的影响[J]. 中国有色金属学报, 2010, 20(z1): 118-122.
ZHANG Pengsheng, ZHAO Yongqing, MAO Xiaonan, et al.The effect of thermal hydrogen treatment on the structure and properties of Ti600 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(z1): 118-122.
[22] 黄树晖, 宗影影, 单德彬. Ti6Al4V合金热氢处理组织演变研究[J]. 材料科学与工艺, 2013, 21(4): 7-11.
HUANG Shuhui, ZONG Yingying, SHAN Debin.Research on microstructure evolution of Ti6Al4V alloy thermal hydrogen treatment[J]. Materials Science and Technology, 2013, 21(4): 7-11.
[23] ZHOU C S, LIU Y, SUN P, et al. Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption: 0023625 A1[P].2021-01-28.
[24] ZHOU C S, LIN F R, SUN P, et al.A novel method for densification of titanium using hydrogenation-induced expansion under constrained conditions[J]. Scripta Materialia, 2022, 210: 114432.
[25] 李钊, 周晓军, 杨辰龙, 等. 曲面变厚度编织CFRP微观形态与孔隙特征分析[J]. 中南大学学报(自然科学版), 2015, 46(3): 829-834.
LI Zhao, ZHOU Xiaojun, YANG Chenlong, et al.Analysis of microscopic morphology and pore characteristics of CFRP braided with variable thickness on curved surfaces[J]. Journal of Central South University (Natural Science Edition), 2015, 46(3): 829-834.
[26] ZHAO J W, DING H, ZHAO W J, et al.Effects of hydrogen on the hot deformation behaviour of Ti-6Al-4V alloy: experimental and constitutive model studies[J]. Journal of Alloys and Compounds, 2013, 574(Complete): 407-414.
[27] LI X F, CHEN X, LI B Y, et al.Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment[J]. Materials Characterization, 2019, 157: 109919.
[28] FROES F, SENKOV O, QAZI J.Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing[J]. International Materials Reviews, 2004, 49(3/4): 227-245.
[29] 赵永庆, 曹兴民, 奚正平. 热氢处理对两相钛合金及β钛合金加工态组织的影响[J]. 稀有金属材料与工程, 2007, 36(7): 1145-1148.
ZHAO Yongqing, CAO Xingmin, XI Zhengping.The effect of thermal hydrogen treatment on the processed microstructure of two-phase titanium alloy and β-titanium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(7): 1145-1148.
[30] INTERNATIONAL A.ASTM standard B348/B348M-21 standard specification for titanium and titanium alloy bars and billets[S]. West Conshohocken, PA: ASTM International, 2021.
[31] 薛松海, 韩鹏江, 冬韩, 等. 热处理对TC18粉末合金微观组织及力学性能影响[J]. 钛工业进展, 2021, 38(4): 16-22.
XUE Songhai, HAN Pengjiang, DONG Han, et al.Effect of heat treatment on microstructure and mechanical properties of TC18 powder alloy[J]. Progress in Titanium Industry, 2021, 38(4): 16-22.
[32] CAO F, CHANDRAN K S R, KUMAR P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment[J]. Scripta Materialia, 2017, 130: 22-26.
[33] YANG F, SUN X, GUAN H.Low cycle fatigue behavior of k40s cobalt-base superalloy at elevated temperature II. fatigue fractography[J]. Acta Metallrugica Sinica, 2002, 38(10): 1053-1056.
[34] CHANDRAN K S R, CHANG P, CASHMAN G T. Competing failure modes and complex S-N curves in fatigue of structural materials[J]. International Journal of Fatigue, 2010, 32(3): 482-491.
[35] 张仕朝, 赵嘉祺, 张建国. ZTC4(Ti-6Al-4V)铸造钛合金的室温低周疲劳行为[J]. 理化检验, 2013, 49(3): 144-147.
ZHANG Shichao, ZHAO Jiaqi, ZHANG Jianguo.Room temperature low-cycle fatigue behavior of ZTC4(Ti-6Al-4V) cast titanium alloy[J]. Physical Testing and Chemical Analysis, 2013, 49(3): 144-147.