[1] GUO N, LEU M C.Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.
[2] CHEN L, HE Y, YANG Y X, et al.The research status and development trend of additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3651-3660.
[3] LI W Y, YANG K, YIN S, et al.Solid-state additive manufacturing and repairing by cold spraying: a review[J]. Journal of Materials Science & Technology, 2018, 34(3): 440-457.
[4] YAN X, CHEN C Y, CHANG C, et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM)[J]. Materials Science and Engineering A, 2020, 781: 139227.
[5] 王晓燕. 铜金属3D打印白皮书[M]. 2版. 上海: 3D科学谷, 2021: 6-7.
WANG Xiaoyan.Whitepaper of Copper 3D Printing[M]. 2nd ed. Shanghai: 3D Science valley, 2021: 6-7.
[6] HUANG J, YAN X C, CHANG C, et al.Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology[J]. Surface & Coatings Technology, 2020, 395: 125936.
[7] 顾冬冬, 沈以赴, 杨家林, 等. 多组分铜基金属粉末选区激光烧结试验研究[J]. 航空学报, 2005, 26(4): 510-514.
GU Dongdong, SHEN Yifu, YANG Jialin, et al.Experimental research on selective of multi-component copper-based metal powder[J]. Acta Aeronautica and Astronautica Sinica, 2005, 26(4): 510-514.
[8] RAHMAN M S, SCHILLING P J, HERRIINGTON P D, et al.Thermal behavior and melt-pool dynamics of Cu-Cr-Zr alloy in powder bed selective laser melting process[J]. International Mechanical Engineering Congress and Exposition, 2019, 11: 11087.
[9] ZHANG G M, CHEN C, WANG X J, et al.Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9): 4223-4230.
[10] GUSTMANN T, DOSSANTOS J M, GARGARELLA P, et al.Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 2017, 3(1): 24-36.
[11] ZHUO L R, SONG B, LI R D, et al.Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting[J]. Optics and Laser Technology, 2020, 127: 106164.
[12] MA Z B, ZHANG K F, REN Z H, et al.Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 828: 154350.
[13] 赵凡, 刘祖铭, 吕学谦, 等. 粉末冶金Cu-Cr-Zr合金的形变热处理组织及性能[J]. 粉末冶金材料科学与工程, 2019, 24(4): 385-390.
ZHAO Fan, LIU Zuming, LÜ Xueqian, et al.Microstructure and properties of thermomechanical heat treatment of powder metallurgy Cu-Cr-Zr alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 385-390.
[14] KARTHIK G M, PRAVEEN S, ALIREZA Z, et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J]. Materialia, 2020, 13: 100861.
[15] WANG J B, ZHOU X L, LI J H, et al.Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy[J]. Additive Manufacturing, 2020, 31: 100921.
[16] 田健, 魏青松, 朱文志, 等. Cu-Al-Ni-Ti合金激光选区成形工艺及其力学性能[J]. 中国激光, 2019, 46(3): 25-36.
TIAN Jian, WEI Qingsong, ZHU Wenzhi, et al.Selective laser melting process and mechanical properties of Cu-Al-Ni-Ti alloy[J]. Chinese Journal of Lasers, 2019, 46(3): 25-36.
[17] ZHANG S S, ZHU H H, ZHANG L, et al.Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2019, 237: 306-309.
[18] UCHIDA S, KIMURA T, NAKAMOTO T, et al.Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting[J]. Materials & Design, 2019, 175: 107815.
[19] CHEN Y H, REN S B, ZHAO Y, et al.Microstructure and properties of Cu-Cr alloy manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 786: 189-197.
[20] ZHOU Y, ZENG X, WU H B, et al.Effect of crystallographic textures on thermal anisotropy of selective laser melted Cu-2.4Ni-0.7Si alloy[J]. Journal of Alloys and Compounds, 2018, 743: 258-261.
[21] 贺定勇, 李现兵, 张朋, 等. 一种利用3D打印制备高比强度、高弹性变形点阵结构铜合金的方法: 108372302A[P], 2018-08-07.
HE Dingyong, LI Xianbing, ZHANG Peng, et al. Method for preparing copper alloy with high specific strength and high elastic deformation lattice structure by using 3D printing: 108372302A[P].2018-08-07.
[22] GAN J, GAO H, WEN S F, et al.Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting[J]. International Journal of Refractory Metals & Hard Materials, 2020, 87: 105144.
[23] ZHONG H Z, LI C G, ZHANG X Y, et al.The graded microstructures evolving with thermal cycles in pure copper processed by laser metal deposition[J]. Materials Letters, 2018, 230: 215-218.
[24] ZHANG Y Z, TU Y, XI M Z, et al.Characterizat ion on laser clad nickel based alloy coating on pure copper[J]. Surface & Coatings Technology, 2008, 202(24): 5924-5928.
[25] BYSAKH S, CHATTOPADHYAY K, MAIWALD T, et al. Microstructure evolution in laser alloyed layer of Cu-Fe-Al-Si on Cu substrate[J]. Materials Science and Engineering A, 2004, 375/377: 661-665.
[26] 顾梦豪. 激光熔覆球磨Cu-Fe涂层的显微结构与性能研究[D]. 南昌: 南昌航空大学, 2016: 29-43.
GU Menghao.Investigation on microstructure and properties of ball milled Cu-Fe coating by laser cladding[D]. Nanchang: Nanchang Hangkong University, 2016: 29-43.
[27] 谢敏. 激光增材制造Cu-Fe偏晶合金凝固机制与性能调控研究[D]. 天津: 天津工业大学, 2021: 39-53.
XIE Min.Study on solidification mechanism and performance control of Cu-Fe monotectic alloy by laser additive manufacturing[D]. Tianjin: Tiangong University, 2021: 39-53.
[28] ANOOP R K, DORA M, ANDREAS W, et al.In-situ synthesis via laser metal deposition of a lean Cu-3.4Cr-0.6Nb(at.%) conductive alloy hardened by Cr nano-scale precipitates and by laves phase micro-particles[J]. Acta Materialia, 2020, 197: 330-340.
[29] LI B Y, ZHENG H, HAN C J, et al.Nanotwins-containing microstructure and superior mechanical strength of a Cu-9Al-5Fe-5Ni alloy additively manufactured by laser metal deposition[J]. Additive Manufacturing, 2021, 39: 101825.
[30] LIU Y T, YE Z G, WANG X, et al.Microstructure and mechanical behavior of Cu-9Al-4Ni-3.5Fe-0.5Mn alloy fabricated by laser melting deposition[J]. Materials Science & Engineering A, 2021, 826: 142006.
[31] LODES M A, GUSCHLBAUER R, KOERNER C.Process development for the manufacturing of 99.94% pure copper via selective electron beam melting[J]. Materials Letters, 2015, 143(15): 298-301.
[32] GUSCHLBUER R, MOMENI S, OSMANLIC F, et al.Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties[J]. Materials Characterization, 2018, 143: 163-170.
[33] LEDFORD C, ROCK C, TUNG M, et al.Evaluation of electron beam powder bed fusion additive manufacturing of high purity copper for overhang structures using in-situ real time backscatter electron monitoring[J]. Procedia Manufacturing, 2020, 48: 828-838.
[34] 黄柯, 张昌松, 赵阳, 等. 铜合金模具材料电子束选区熔化成形件耐磨性及机理分析[J]. 模具制造, 2019(3): 86-89.
HUANG Ke, ZHANG Changsong, ZHAO Yang, et al.Wear resistance and mechanism analysis of copper alloy die material forming parts by electron beam selective melting[J]. Die & Mould Manufacture, 2019(3): 86-89.
[35] RAMIREZ D A, WICKER R B, GAYTAN S M, et al.Open-cellular copper structures fabricated by additive manufacturing using electron beam melting[J]. Materials Science and Engineering A, 2011, 528(16/17): 5379-5386.
[36] KUMAR A, BAI Y, EKLUND A, et al.Effects of hot isostatic pressing on copper parts fabricated via binder jetting[J]. Procedia Manufacturing, 2017, 10: 935-944.
[37] BAI Y, VIRGINIA T, BLACK V, et al.An exploration of binder jetting of copper[J]. Rapid Prototyping Journal, 2015, 21: 177-185.
[38] MIYANAJI H, MA D, MARK A, et al.Binder jetting additive manufacturing of copper foam structures[J]. Additive Manufacturing, 2020, 32: 100960.
[39] LI M, HUANG J C, FANG A, et al.Binder jetting additive manufacturing of copper/diamond composites: an experimental study[J]. Journal of Manufacturing Processes, 2021, 70: 205-213.
[40] THANG Q, TRAN A C, JEREMY K Y, et al.3D printing of highly pure copper[J]. Metals, 2019, 9(7): 756-756.
[41] HENRY C D, DAVID L E, WILLIAM S L.Comparison of GRCop-84 to other Cu alloys with high thermal conductivies[J]. Journal of Materials Engineering and Performance, 2007, 17(4): 594-606.
[42] SHI K Y, XUE L H, YAN Y W, et al.Preparation and arc erosion characteristics of ultrafine crystalline CuCr50 Alloy by MA-SPS[J]. Journal of Wuhan University of Technology, 2016, 31(5): 1081-1085.