[1] 邓玉昆, 陈景榕, 王世章. 高速工具钢[M]. 北京: 冶金工业出版社, 2002: 1-16.
DENG Yukun, CHEN Jingrong, WANG Shizhang.High Speed Tool Steel[M]. Beijing: Metallurgical Industry Press, 2002: 1-16.
[2] DOBRZAŃSKI L A, MATULA G, VÁREZ A, et al. Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels[J]. Journal of Materials Processing Technology, 2004, 157/158(1/2): 324-330.
[3] WRIGHT C S, WRONSKI A S, ITURRIZA I.Development of robust processing routes for powder metallurgy high speed steels[J]. Metal Science Journal, 2000, 16(9): 945-957.
[4] GIMÉNEZ S, ITURRIZA I. Computer aided design of PM high speed steels for vacuum and nitrogen atmospheres[J]. Powder Metallurgy, 2003, 46(3): 209-218.
[5] KHRAISAT W, NYBORG L, SOTKOVSZKI P.Effect of silicon, vanadium and nickel on microstructure of liquid phase sintered M3/2 grade high speed steel[J]. Powder Metallurgy, 2005, 48(1): 33-38.
[6] CHEN N, LUO R, XIONG H W, et al.Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders[J]. Materials Science and Engineering A, 2020, 771: 138628.
[7] GIMÉNEZ S, ZUBIZARRETA C, TRABADELO V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions[J]. Materials Science and Engineering A, 2008, 480(1/2): 130-137.
[8] VÁREZ A, LEVENFELD B, TORRALBA J M, et al. Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process[J]. Materials Science and Engineering A, 2004, 366(2): 318-324.
[9] BOLTON J D, BAAH H O.Liquid phase sintering of various high speed steels with copper-phosphorus addition[J]. Powder Metallurgy, 1991, 34(4): 273-279.
[10] ŠUŠTARŠIČ B, KOSEC L, JENKO M, et al. Vacuum sintering of water-atomised HSS powders with MoS2 additions[J]. Vacuum, 2001, 61(2): 471-477.
[11] SARASOLA M, GÓMEZ-ACEBO T, CASTRO F. Liquid generation during sintering of Fe-3.5%Mo powder compacts with elemental boron additions[J]. Acta Materialia, 2004, 52(15): 4615-4622.
[12] LIU Z Y, LOH N H, KHOR K A, et al.Microstructure evolution during sintering of injection molded M2 high speed steel[J]. Materials Science and Engineering A, 2000, 293(1): 46-55.
[13] ROMANO P, VELASCO F J, TORRALBA J M, et al.Processing of M2 powder metallurgy high-speed steel by means of starch consolidation[J]. Materials Science and Engineering A, 2006, 419(1): 1-7.
[14] ASGHARZADEH H, SIMCHI A.Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder[J]. Materials Science and Engineering A, 2005, 403(1/2): 290-298.
[15] KONG L B, MA J, ZHU W, et al.Highly enhanced sinterability of commercial PZT powders by high-energy ball milling[J]. Materials Letters, 2000, 46(5): 274-280.
[16] MALEWAR R, KUMAR K S, MURTY B S, et al.On sinterability of nanostructured W produced by high-energy ball milling[J]. Journal of Materials Research, 2007, 22(5): 1200-1206.
[17] HERRANZ G, ROMERO A, CASTRO V D, et al.Development of high speed steel sintered using concentrated solar energy[J]. Journal of Materials Processing Technology, 2013, 213(12): 2065-2073.
[18] HERRANZ G, ROMERO A, CASTRO V D, et al.Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering[J]. Materials and Design, 2014, 54(2): 934-946.
[19] JIMÉNEZ J A, CARSÍ M, FROMMEYER G, et al. Microstructural and mechanical characterisation of composite materials consisting of M3/2 high speed steel reinforced with niobium carbides[J]. Powder Metallurgy, 2005, 48(4): 371-376.
[20] BOLTON J.Modern developments in sintered high speed steels[J]. Metal Powder Report, 1996, 51(2): 33-36.
[21] VELASCO F, ISABEL R, ANTÓN N, et al. TiCN-high speed steel composites: sinterability and properties[J]. Composites Part A, 2002, 33(6): 819-827.
[22] ZHANG Q K, YAO J, SHEN W J, et al.Direct fabrication of high-performance high speed steel products enhanced by LaB6[J]. Materials and Design, 2016, 112: 469-478.
[23] BORGSTRÖM H, NYBORG L. Effect of vacuum annealing and nitrogen alloying on gas atomised M4 high speed steel powder[J]. Powder Metallurgy, 2006, 49(1): 48-56.
[24] KAWASAKI E, SANSCRAINTE J, WALSH T J.Kinetics of reduction of iron oxide with carbon monoxide and hydrogen[J]. AICHE Journal, 2010, 8(1): 48-52.
[25] ROUSSEAU A F, PARTRIDGE J G, GÖZÜKARA Y M, et al. Carbon evolution during vacuum heat treatment of high speed steel[J]. Vacuum, 2016, 124: 85-88.
[26] LIU Z Y, LOH N H, KHOR K A, et al.Sintering activation energy of powder injection molded 316L stainless steel[J]. Scripta Materialia, 2001, 44(7): 1131-1137.
[27] TRABADELO V, GIMÉNEZ S, GÓMEZ-ACEBO T, et al. Critical assessment of computational thermodynamics in the alloy design of PM high speed steels[J]. Scripta Materialia, 2005, 53(3): 287-292.
[28] 龙学湖, 滕浩, 李志友. TiCp/M2粉末高速钢的显微组织与性能[J]. 粉末冶金材料科学与工程, 2019, 24(5): 430-436.
LONG Xuehu, TENG Hao, LI Zhiyou.Microstructure and properties of TiCp/M2 powder metallurgical high speed steel[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 430-436.
[29] AKASH A, MAYO M J.Pore growth during initial-stage sintering[J]. Journal of the American Ceramic Society, 2010, 82(11): 2948-2952.
[30] SHEN W J, YU L P, Li Z, et al.In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6[J]. Metals and Materials International, 2017, 23(6): 1150-1157.