[1] 林正得, 舒圣程, 李傲, 等. 石墨烯增强铜基复合材料的研究进展[J]. 无机材料学报, 2019, 34(5): 469-477.
LIN Zhengde, SHU Shengcheng, LI Ao, et al.Research progress of graphene reinforced copper matrix composites[J]. Journal of Inorganic Materials, 2019, 34(5): 469-477.
[2] 周洪雷, 刘平, 陈小红, 等. 原位合成CNTs 强化铜基复合材料的组织与性能[J]. 材料热处理学报, 2018, 39(7): 1-6.
ZHOU Honglei, LIU Ping, CHEN Xiaohong, et al.Microstructure and properties of CNTs reinforced copper matrix composites synthesized in situ[J]. Journal of Material Heat Treatment, 2018, 39(7): 1-6.
[3] 伊春强, 尹彩流, 刘春轩, 等. 粉末冶金法制备三维(3D)石墨烯增强铜基复合材料的性能[J]. 粉末冶金材料科学与工程, 2019, 24(5): 478-484.
YI Chunqiang, YIN Cailiu, LIU Chunxuan, et al.Properties of three-dimensional (3D) graphene reinforced copper matrix composites prepared by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 478-484.
[4] 郭圣达, 陈颢, 张建波, 等. 协同增强铜基复合材料及其制备方法[P]. 江西省: CN109825734B.2020-09-01.
GUO Shengda, CHEN Hao, ZHANG Jianbo, et al. Synergistic reinforced copper matrix composites and their preparation methods[P]. Jiangxi Province: CN109825734B.2020-09-01.
[5] 李兴艳. 铜合金(CuSn8P)高温塑性变形行为与热加工特性试验研究[D]. 太原: 中北大学, 2019.
LI Xingyan.Experimental study on high temperature plastic deformation behavior and hot working characteristics of copper alloy (CuSn8p)[D]. Taiyuan: North University of China, 2019.
[6] 冯江, 宋克兴, 梁淑华, 等. 混杂增强铜基复合材料的设计与研究进展[J]. 材料热处理学报, 2018, 39(5): 1-9.
FENG Jiang, SONG Kexing, LIANG Shuhua, et al.Design and research progress of hybrid reinforced copper matrix composites[J]. Journal of material heat treatment, 2018, 39(5): 1-9.
[7] 王臣臣. 二硼化锆增强铜基复合材料的研究[D]. 广州: 暨南大学, 2018.
WANG Chenchen.Research on zirconium diboride reinforced copper matrix composites[D]. Guangzhou: Jinan University, 2018.
[8] 祝志祥, 丁一, 徐若愚, 等. 碳纤维增强铜基复合材料制备方法研究进展[J]. 功能材料, 2021, 52(3): 3060-3066.
ZHU Zhixiang, DING Yi, XU Ruoyu, et al.Research progress on preparation methods of carbon fiber reinforced copper matrix composites[J]. Functional Materials, 2021, 52(3): 3060-3066.
[9] 王晗. 多相协同增强铜基复合材料的制备与强化机理研究[D]. 秦皇岛: 燕山大学, 2020.
WANG Han.Study on preparation and strengthening mechanism of multiphase synergistic reinforced copper matrix composites [D]. Qinhuangdao: Yanshan University, 2020.
[10] 周川, 路新, 贾成厂, 等. 碳纳米管增强铜基复合材料的制备,力学性能及电导率[J]. 稀有金属材料与工程, 2019, 48(4): 1249-1255.
ZHOU Chuan, LU Xin, JIA Chengchang, et al.Preparation, mechanical properties and conductivity of carbon nanotube reinforced copper matrix composites[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1249-1255.
[11] 龙飞. CNTs-TiB2混杂增强铜基复合材料组织及性能研究[D]. 郑州: 河南科技大学, 2020.
LONG Fei.Study on microstructure and properties of CNTs-TiB2 hybrid reinforced copper matrix composites[D]. Zhengzhou: Henan University of Science and Technology, 2020.
[12] 刘亮. 分子级共混法制备 CNT/Cu-Ti复合材料及微观组织结构和性能研究[D]. 昆明: 昆明理工大学, 2018.
LIU Liang.Study on microstructure and properties of CNT/Cu-Ti composites prepared by molecular blending[D]. Kunming: Kunming University of Science and Technology, 2018.
[13] 李国辉. TiB2颗粒和CNTs混杂增强铜基复合材料制备及其电接触行为研究[D]. 洛阳: 河南科技大学, 2018.
LI Guohui.Preparation and electrical contact behavior of TiB2 particles and CNTs hybrid reinforced copper matrix composites[D]. Luoyang: Henan University of Science and Technology, 2018.
[14] 徐少春, 杨军, 崔雅茹. 陶瓷颗粒增强铜基复合材料研究进展[J]. 热加工工艺, 2009, 38(10): 105-108.
XU Shaochun, YANG Jun, CUI Yaru.Research progress of ceramic particle reinforced copper matrix composites[J]. Hot Working Technology, 2009, 38(10): 105-108.
[15] XIANG S Q, DU X J, LIANG Y H, et al.Optimizing phase interface of titanium carbide-reinforced copper matrix composites fabricated by electropulsing-assisted flash sintering[J]. Materials Science and Engineering A, 2021, 819: 141506.
[16] ZHANG G H, JIANG X S, SHAO Z Y, et al.Microstructures and mechanical properties of alumina whisker reinforced copper matrix composites prepared by hot-pressing and hot isostatic pressing[J]. Materials Research Express, 2019, 6(11): 116513.
[17] CHEN X F, TAO J M, YI J H, et al.Strengthening behavior of carbon nanotube-graphene hybrid in copper matrix composite[J]. Materials Science and Engineering A, 2018, 718: 427-467.
[18] KIM K T, ECKERT J, MENZEL S B, et al.Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites[J]. Applied Physics Letters, 2008, 92(12): 1219011-12190130.
[19] 李澜波, 鲍瑞, 易健宏, 等. 微波烧结碳纳米管增强铜基复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2017, 22(4): 569-575.
LI Lanbo, BAO Rui, YI Jianhong, et al.Microstructure and mechanical properties of microwave sintered carbon nanotube reinforced copper matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(4): 569-575.
[20] 韦德满, 黄朴, 周治文, 等. 石墨烯增强铜基复合材料的制备技术及发展[J]. 特种铸造及有色合金, 2020, 40(3): 259-265.
WEI Deman, HUANG Pu, ZHOU Zhiwen, et al.Preparation technology and development of graphene reinforced copper matrix composites[J]. Special Casting and Nonferrous Alloys, 2020, 40(3): 259-265.
[21] 孙海珠, 杨国夺, 杨柏. 碳点的设计合成,结构调控及应用[J]. 高等学校化学学报, 2021, 42(2): 349-365.
SUN Haizhu, YANG Guoduo, YANG Bai.Design, synthesis, structural regulation and application of carbon dots[J]. Journal of Chemistry of Colleges and Universities, 2021, 42(2): 349-365.
[22] 黄啸, 鲍瑞, 易健宏. 碳量子点(CQDs)在纯铜基复合材料中的增强作用[J]. 中南大学学报(英文版), 2021, 28(4): 1255-1265.
HUANG Xiao, BAO Rui, YI Jianhong.Enhancement of carbon quantum dots (CQDs) in pure copper matrix composites[J]. Journal of Central South University (English Edition), 2021, 28(4): 1255-1265.
[23] LONG F, GUO X H, SONG K X, et al.Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites[J]. Journal of Materials Research and Technology, 2020, 9(4): 7989-8000.
[24] 周泉竹, 徐海波, 杜敏, 等. 碳纳米管的表面改性及在铜基复合材料中的应用[J]. 功能材料, 2019, 50(4): 4201-4206.
ZHOU Quanzhu, XU Haibo, DU Min, et al.Surface modification of carbon nanotubes and its application in copper matrix composites[J]. Functional Materials, 2019, 50(4): 4201-4206.
[25] 周生刚, 徐阳, 马双双, 等. 碳纳米管增强金属基复合材料研究综述[J]. 昆明理工大学学报(自然科学版), 2017, 42(4): 14-19.
ZHOU Shenggang, XU Yang, MA Shuangshuang, et al.Review of carbon nanotube reinforced metal matrix composites[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(4): 14-19.
[26] DENG H, YI J H, XIA C, et al.Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2017, 727: 260-268.
[27] 杨长毅, 刘允中, 余开斌. 球磨时间对石墨烯/ODS铜基复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 281-291.
YANG Changyi, LIU Yunzhong, YU Kaibin.Effect of ball milling time on microstructure and properties of graphene/ODS copper matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 281-291.
[28] 余杰, 曾洪亮, 温业成, 等. 石墨烯增强铜基复合材料的研究进展[J]. 材料科学与工程学报, 2021, 39(1): 167-173.
YU Jie, ZENG Hongliang, WEN Yecheng, et al.Research progress of graphene reinforced copper matrix composites[J]. Journal of Materials Science and Engineering, 2021, 39(1): 167-173.
[29] MAI Y G, CHEN F X, LIAN W Q, et al.Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets[J]. Journal of Alloys and Compounds, 2018, 756: 1-7.
[30] 王剑, 郭丽娜, 林万明, 等. 石墨烯含量对铜基复合材料的导电, 导热, 耐腐蚀和力学性能的影响[J]. 新型炭材料, 2019, 34(2): 161-169.
WANG Jian, GUO Lina, LIN Wanming, et al.Effect of graphene content on electrical conductivity, thermal conductivity, corrosion resistance and mechanical properties of copper matrix composites[J]. New Carbon Materials, 2019, 34(2): 161-169.
[31] RAJKOVIC V, BOZIC D, DEVECERSKI A, et al.Characteristic of copper matrix simultaneously reinforced with nano-and micro-sized Al2O3 particles[J]. Materials Characterization, 2012, 67: 129-137.
[32] LIN H R, GUO X X, SONG K X, et al.Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers[J]. Nanotechnology Reviews, 2021, 10(1): 62-72.
[33] WU T F, LEE S L,CHEN M H, et al.Effects of tungsten carbide and cobalt particles on corrosion and wear behaviour of copper matrix composite[J]. Materials Science and Technology, 2005, 21(3): 295-304.
[34] ZHANG X J, YANG W C, ZHANG J Y, et al.Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties[J]. Materials Science & Engineering, 2019, 743: 512-519.
[35] ZHANG X, SHI C S, LIU E Z, et al.In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites Part A, 2017, 103: 178-187.
[36] XIA W, TAO J M, LIU Y C, et al.High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins[J]. Diamond & Related Materials, 2019, 99: 107537.
[37] XU Z H, ZHANG X, ZHAO N Q, et al.Synergistic strengthening effect of in-situ synthesized WC1-x nanoparticles and graphene nanosheets in copper matrix composites[J]. Composites Part A, 2020, 133: 105891.
[38] NAUTIYAL H, KUMARI S, KHATRI O P, et al.Copper matrix composites reinforced by rGO-MoS2 hybrid: strengthening effect to enhancement of tribological properties[J]. 2019, 173: 106931.
[39] PAN Y, XIAO S Q, LU X, et al.Fabrication mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites[J]. Journal of Alloys and Compounds, 2019, 782: 1015-1023.
[40] LIANG S H, LI W Z, JIANG Y H, et al.Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles[J]. Journal of Alloys and Compounds, 2019, 797: 589-594.
[41] CHEN X F, TAO J M, LIU Y C, et al.Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube- graphene hybrids[J]. Carbon, 2019, 146: 736-755.
[42] SHU R, JIANG X S, SHAO Z Y, et al.Fabrication and mechanical properties of MWCNTs and graphene synergetically reinforced Cu-graphite matrix composites[J]. 2019, 349: 59-69.
[43] ZHAO Q, GAN X P, ZHOU K C.Enhanced properties of carbon nanotube-graphite hybrid-reinforced Cu matrix composites via optimization of the preparation technology and interface structure[J]. Powder Technology, 2019, 355: 408-416.
[44] 张良启, 鲍瑞, 易健宏. 喷雾热解制备 CNT/W 用于增强铜基复合材料[J]. 中国钨业, 2020, 35(6): 17-23.
ZHANG Liangqi, BAO Rui, YI Jianhong.Spray pyrolysis CNT/W was used to enhance copper matrix composites[J]. China Tungsten Industry, 2020, 35(6): 17-23.
[45] CHEN X Y, BAO R, YI J H, et al.Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement[J]. Journal of Materials Science, 2020, 56: 1-16.
[46] AKBARPOUR M R, MIRABAD H M, AZAR M K, et al.Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process[J]. Chemicals & Chemistry, 2020, 786: 139395.
[47] QIAO Y B, CAI X L, ZHOU Lwi, et al.Microstructure and mechanical properties of copper matrix composites synergistically reinforced by Al2O3 and CNTs[J]. Integrated Ferroelectrics, 2018, 191(1): 133-144.
[48] GUO X H, YANG Y B, SONG K X, et al.Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles[J]. Journal of Materials Research and Technology, 2021, 11: 1469-1479.
[49] CUI G J, BI Q L, ZHU S Y, et al.Synergistic effect of alumina and graphite on bronze matrix composites: tribological behaviors in sea water[J]. Wear, 2013, 303(1/2): 216-224.
[50] 韩凤麟. 粉末冶金基材教程-基本原理与应用[M]. 广州: 华南理工大学出版社, 2005: 8-25.
HAN Fenglin.Course of Powder Metallurgy Substrate Basic Principle and Application[M]. Guangzhou: South China University of Technology Press, 2005: 8-25.
[51] 褚伟文. TiC/金刚石增强铜基复合材料的制备及其组织性能研究[D]. 北京: 华北电力大学, 2020.
CHU Weiwen.Preparation microstructure and properties of TiC/diamond reinforced copper matrix composites[D]. Beijing: North China Electric Power University, 2020.
[52] 鲍瑞, 李澜波, 易健宏, 等. CNTs 增强铜基复合粉末制备的研究进展[J]. 粉末冶金技术, 2016, 34(6): 454-460.
BAO Rui, LI Lanbo, YI Jianhong, et al.Research progress in the preparation of CNTs reinforced copper matrix composite powder[J]. Powder Metallurgy Technology, 2016, 34(6): 454-460.
[53] LASIO B, TORRE F, ORRU R, et al.Fabrication of Cu-graphite metal matrix composites by ball milling and spark plasma sintering[J]. Materials Letters, 2018, 230: 199-202.
[54] 聂海斌. 分子级混合法制备石墨烯铜基复合材料及其摩擦学性能研究[D]. 长沙: 湖南大学, 2018.
NIE Haibin.Preparation of graphene copper matrix composites by molecular mixing method and its tribological properties[D]. Changsha: Hunan University, 2018.
[55] 蒋阳, 陶珍东. 粉体工程[M]. 武汉: 武汉理工大学出版社. 2011: 387-388.
JIANG Yang, TAO Zhendong.Powder Engineering[M]. Wuhan: Wuhan University of Technology Press, 2011: 387-388.
[56] 王靖瑛, 吕信群, 陈仕奇, 等. Ni 含量对 Cu-Ni-Ag 合金固溶强化行为的影响[J]. 粉末冶金材料科学与工程, 2021, 26(3): 263-271.
WANG Jingying, LÜ Xinqun, CHEN Shiqi, et al.Effect of Ni content on solid solution strengthening behavior of Cu-Ni-Ag alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 263-271.
[57] XIONG C Z, LI D S, SONG S L, et al.Research on the performance of rGO-CNTs synergistically enhanced copper matrix composites[J]. Powder Technology, 2021, 394: 1-9.
[58] LIU L, BAO R, YI J H.Mono-dispersed and homogeneous CNT/Cu composite powder preparation through forming Cu2O intermediates[J]. Powder Technology, 2018, 328: 430-435.
[59] 赵文敏, 鲍瑞, 易健宏, 等. 静电吸附制备 RGO/Cu 复合材料[J]. 中国有色金属学报(英文版), 2020, 30(4): 982-991.
ZHAO Wenmin, BAO Rui, YI Jianhong, et al.Fabrication of RGO/Cu composites based on electrostatic adsorption[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 982-991.
[60] 丁飞. Al2O3 强化铜基复合材料的制备及其性能研究[D]. 安徽: 合肥工业大学, 2014.
DING Fei.Preparation and properties of Al2O3 reinforced copper matrix composites[D]. Anhui: Hefei University of Technology, 2014.
[61] FAN L, WANG T L, FU Z B, et al.Effect of heat-treatment on-line process temperature on the microstructure and tensile properties of a low carbon Nb-microalloyed steel[J]. Materials Science and Engineering A, 2014, 607: 559-568.