[1] 陈立东, 刘睿恒, 等. 史迅. 热电材料与器件[M]. 北京: 科学出版社, 2018: 1-14.
CHEN Lidong, LIU Ruiheng, SHI Xun, et al.Thermoelectric Materials and Devices[M]. Beijiang: Science Press, 2018: 1-14.
[2] 张建中. 温差电技术[M]. 天津: 天津科学技术出版社, 2013: 131-135, 219-224.
ZHANG Jianzhong.Thermoelectric Technology[M]. Tianjin: Tianjin Science and Technology Press, 2013: 131-135, 219-224.
[3] WOOD C.Materials for thermoelectric energy conversion[J]. Reports on Progress in Physics, 1988, 51(4): 459-539.
[4] BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[5] MENG F, CHEN L, SUN F.A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities[J]. Energy, 2011, 36(5): 3513-3522.
[6] SNYDER G J, TOBERER E S.Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 101-110.
[7] GERLACH E A.Method to determine the contact areas of clusters deposited on a semiconducting substrate[J]. Physica Status Solidi, 1999, 176(2): 937-942.
[8] 周欢欢, 檀柏梅, 张建新, 等. Bi2Te3热电材料研究现状[J]. 半导体技术, 2011, 36(10): 765-770, 777.
ZHOU Huanhuan, TAN Baimei, ZHANG Jianxin, et al.Research status of Bi2Te3 thermoelectric materials[J]. Semiconductor Technology, 2011, 36(10): 765-770, 777.
[9] LIU W S, WANG H Z, WANG L J, et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100.
[10] BOHRA A K, BHATT R, SINGH A, et al.Transition from n-to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development[J]. Materials & Design, 2018, 159: 127-137.
[11] TAKAHASHI M, KATOU Y, NAGATA K, et al.The composition and conductivity of electrodeposited Bi/Te alloy films[J]. Thin Solid Films, 1994, 240(1/2): 70-72.
[12] TAKAHASHI M, MURAMATSU Y, SUZUKI T, et al.Preparation of Bi2Te3 films by electrode position from solution containing biethylenedia mine tetra acetic acid complex and TeO2[J]. Journal of the Electrochemical Society, 2003, 150(3): 169-174.
[13] CHEN S W, YANG T R, WU C Y, et al.Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples[J]. Journal of Alloys and Compounds, 2016, 686: 847-853.
[14] LIN C F, HAU N Y, HUANG Y T, et al.Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints[J]. Journal of Alloys and Compounds, 2017, 708: 220-230.
[15] FENG S P, CHANG Y H, YANG J, et al.Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials[J]. Physical Chemistry Chemical Physics, 2013, 15(18): 6757-6762.
[16] BOTTNER H, NURNUS J, GAVRIKOV A, et al.New thermoelectric components using microsystem technologies[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 414-420.
[17] DICK B, BRETT M J, SMY T, et al.Periodic submicrometer structures by sputtering[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2001, 19(5): 1813-1819.
[18] HE M, CHEN Z, QI G.Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization[J]. Acta Materialia, 2004, 52(7): 2047-2056.
[19] ZHU X D, CAO L L, ZHU W, et al.Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance[J]. Advanced Materials Interfaces, 2018, 23(5): 1801279.
[20] ZOU H L, ROWE D M, GAO M.Growth of p-and n-type bismuth telluride thin films by co-evaporation[J]. Journal of Crystal Growth, 2001, 222(1/2): 82-87.
[21] LIN W P, WESOLOWSKI D E, LEE C C.Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(9): 1313-1320.
[22] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al.MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications[J]. Journal of Crystal Growth, 1997, 170(1/4): 817-821.
[23] KIM S, SOHN H S, SON I, et al.Influence of electroless Ni-P and Pd-P plating on the bonding strength of n-type Bi-Te thermoelements[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7603-7608.
[24] CHIEN P Y, YEH C H, HSU H H, et al.Polarity Effect in a Sn3Ag0.5Cu/Bismuth telluride thermoelectric system[J]. Journal of Electronic Materials, 2014, 43(1): 284-289.
[25] LIN W C, LI Y S, WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p- and n-type thermoelectric modules[J]. Journal of Electronic Materials, 2018, 47(1): 148-154.
[26] ZHAO D G, TIAN C W, TANG S Q, et al.Fabrication of a CoSb3-based thermoelectric module[J]. Materials Science in Semiconductor Processing, 2010, 13(3): 221-224.
[27] TEWOLDE M, FU G, HWANG D J, et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J]. Journal of Thermal Spray Technology, 2016, 25(3): 431-440.
[28] JIANG C P, FAN X A, RONG Z Z, et al.Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes[J]. Journal of Electronic Materials, 2017, 46(2): 1363-1370.
[29] XIA H, CHEN C L, DRYMIOTIS F, et al.Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication[J]. Journal of Electronic Materials, 2014, 43(11): 4064-4069.
[30] XIA H, DRYMIOTIS F, CHEN C L, et al.Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications[J]. Journal of Materials Science, 2014, 49(4): 1716-1723.
[31] JIN S, HUANG M, KWON Y, et al.Colossal grain growth yields single-crystal metal foils by contact-free annealing[J]. Science, 2018, 362(6418): 1021-1025.
[32] 胡晓凯, 张双猛, 赵府, 等. 热电器件的界面和界面材料[J]. 无机材料学报, 2019, 34(3): 269-278.
HU Xiaokai, ZHANG Shuangmeng, ZHAO Fu, et al.Thermoelectric device: contact interface and interface materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269-278.
[33] ZHOU H Y, MU X, ZHAO W Y, et al.Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules[J]. Nano Energy, 2017, 40: 274-281.