Home   |   About Journal   |   Editorial Board   |   Instruction   |   Subscriptions   |   Contacts Us   |   中文
Theoretical Research

Precipitated activation energy and TTT curves of primary α phases in TB17 titanium alloy

  • LÜ Yaping ,
  • ZOU Jindian ,
  • ZHANG Hongling ,
  • FAN Kai ,
  • LI Chao ,
  • ZHU Zhishou
Expand
  • 1. Hunan Goldsky Titanium Industry Technology Co., Ltd., Changde 410015, China;
    2. Hunan Engineering Technology Research Center in Special Titanium Alloys for High-end Equipment, Changde 410015, China;
    3. Beijing Institute of Aeronautical Materials, Beijing 100095,China

Received date: 2021-08-17

  Revised date: 2021-09-13

  Online published: 2021-12-22

Abstract

The precipitation behavior and temperature range of grain boundary α phase and Widmanstatten α phase during the process of uniform cooling (5 K/min) from single-phase region (5 K/min) to two-phase regionin TB17 titanium alloy were investigated by microstructure observation and differential thermal analysis. The temperature ranges of the two phases are determined to be 1 120-992 K and 920-895 K, respectively. Then the Avrami-Johnson-Mehl criterion was adopted to calculate the activation energy of the two type α phases and the results are Qαb=253.236 kJ/mol, and QαI= 503.188 kJ/mol, and the precipitation kinetics equation of the two kinds of α phase are acquired, subsequently. The TTT curves of two type α phases are constructed based on the equation. According to the TTT curves results, the tip temperature of grain boundary α and Widmanstatten α phase is about 1 023 K and 905 K respectively.

Cite this article

LÜ Yaping , ZOU Jindian , ZHANG Hongling , FAN Kai , LI Chao , ZHU Zhishou . Precipitated activation energy and TTT curves of primary α phases in TB17 titanium alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021 , 26(6) : 500 -506 . DOI: 10.19976/j.cnki.43-1448/TF.2021069

References

[1] 商国强, 朱知寿, 常辉, 等. 超高强钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286-291.
SHANG Guoqiang, ZHU Zhishou, CHANG Hui, et al.Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2011, 35(2): 286-291.
[2] 王哲, 王新南, 商国强, 等. 新型超高强韧钛合金热变形行为研究[J]. 稀有金属材料与工程, 2018, 47(3): 810-815.
WANG Zhe, WANG Xinnan, SHANG Guoqiang, et al.Hot deformation behavior of new high strength and toughness titanium alloy[J]. Rare Metal Materials and Engineering, 2018, 47(3): 810-815.
[3] 辛社伟, 周伟, 李倩, 等. 1 500 MPa级新型超高强中韧钛合金[J]. 中国材料进展, 2021, 40(6): 441-445.
XIN Shewei, ZHOU Wei, LI Qian, et al.A new type extra-high strength and medium toughness titanium alloy of Ti-1500[J]. Materials China, 2021, 40(6): 441-445.
[4] LI Jing, XIN Yunpeng, JIANG Tao, et al.Penetration damaging behavior of TB17 titanium alloy[J]. Materials Science Forum, 2020, 993: 100-107.
[5] 信云鹏, 朱知寿, 王新南, 等. TB17钛合金两相区等温时效析出行为研究[J]. 钛工业进展, 2020, 37(3): 10-14.
XIN Yunpeng, ZHU Zhishou, WANG Xinnan, et al.Study on isothermal aging precipitation behavior of TB17 titanium alloy in α+β region[J]. Titanium Industry Progress,2020, 37(3): 10-14.
[6] WANG Z, WANG X, ZHU Z.Characterization of high- temperature deformation behavior and processing map of TB17 titanium alloy[J]. Journal of Alloys and Compounds, 2017, 692: 149-154.
[7] 杜舜尧, 陈明和, 朱知寿, 等. 新型超高强钛合金TB17铣削加工表面完整性试验研究[J]. 组合机床与自动化加工技术, 2017(4): 125-129.
DU Shunyao, CHEN Minghe, ZHU Zhishou, et al.Experimental research on surface integrity of milling new ultra-high strength titanium alloy TB17[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(4): 125-129.
[8] 詹孝冬, 张晓泳, 李少君, 等. Ti-55531近β钛合金中针片α组织破碎的临界变形条件[J]. 粉末冶金材料科学与工程, 2016, 21(5): 665-671.
ZHAN Xiaodong, ZHANG Xiaoyong, LI Shaojun, et al.Critical conditions of lamellar α crushing during hot deformation in Ti-55531 near-β titanium alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(5): 665-671.
[9] 刘璐, 张晓泳, 李志友, 等. 基于有限元模拟的Ti-55531钛合金等温模锻不均匀变形[J]. 粉末冶金材料科学与工程, 2017, 22(2): 159-168.
LIU Lu, ZHANG Xiaoyong, LI Zhiyou, et al.Inhomogeneity deformation in isothermal forging process of Ti-55531 titanium alloy based on finite element simulation[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(2): 159-168.
[10] SANG W L, OH J M, KIM J H, et al.Demonstration of martensite reorientation-induced plasticity by ultra-high strength titanium alloys[J]. Materials Science and Engineering A, 2021, 807: 140878.
[11] 朱磊, 肖纳敏, 王浩, 等. 钛合金热处理工艺仿真研究进展[J]. 热处理技术与装备, 2021, 42(1): 33-39.
ZHU Lei, XIAO Namin, WANG Hao, et al.Research progress in simulation of heat treatment process of titanium alloy[J]. Heat Treatment Technology and Equipment, 2021, 42(1): 33-39.
[12] 赵倩, 袁晓光, 黄宏军, 等. Al-Mg-Si-Zr-XEr合金β″相析出动力学研究[J]. 稀有金属材料科学与工程, 2016(11): 2889-2894.
ZHAO Qian, YUAN Xiaoguang, HUANG Hongjun, et al.Precipitation kinetics for β″ phase of Al-Mg-Zr-XEr alloys[J]. Rare Metal Materials and engineering, 2016(11): 2889-2894.
[13] LI H, WANG X L, SHI Z X, et al.Precipitation behaviors of Al-Mg-Si-(Cu) aluminum alloys during continuous heating[J]. Chinese Journal of Nonferrous Metals, 2011, 21(9): 2028-2034.
[14] 蔡馨, 雷旻, 万明攀, 等. TC17钛合金连续冷却转变曲线研究[J]. 稀有金属, 2019, 43(12): 1291-1296.
CAI Xin, LEI Ming, WAN Mingpan, et al.Continuous cooling transformation diagram of TC17 titanium alloy[J]. Chinese Journal of Rare Metals, 2019, 43(12): 1291-1296.
[15] 余新平, 董洪波. TC21钛合金的等温转变行为[J]. 材料热处理学报, 2014, 35(12): 37-42.
YU Xinping, DONG Hongbo.Isothermal transformation behavior of TC21 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2019, 43(12): 1291-1296.
Outlines

/

Copyright © Editorial Board of Materials Science and Engineering of Powder Metallurgy
Tel: 0731-88877163 E-mail: pmbjb@csu.edu.cn
Supported by: Beijing Magtech